ANALYSIS OF PARAMETRICALLY EXCITED LAMINATED SHELLS

被引:22
|
作者
CEDERBAUM, G
机构
[1] The Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva
关键词
D O I
10.1016/0020-7403(92)90074-Q
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The dynamic stability of a shear-deformable circular cylindrical shell subjected to a periodic axial loading P(t) = P(s) + P(d) cos omega-t is investigated. The simply-supported laminated shell of finite length is analyzed within Love's first-approximation theory, with the addition of transverse shear deformation and rotary inertia. Using the method of multiple scales, analytical expressions for the instability regions are obtained at omega = OMEGA(j) +/- OMEGA(i), where OMEGA(i) are the natural frequencies of the shell. Yet, it is shown that instability cannot occur for the case omega = OMEGA(j) - OMEGA(i) due to the symmetric properties of the problem. It is also shown that, besides the principal instability region at omega = 2-OMEGA-1 (OMEGA-1 is the fundamental frequency), other cases of omega = OMGEGA(i) + OMEGA(j) can be of major importance and yield a significantly enlarged instability region.
引用
收藏
页码:241 / 250
页数:10
相关论文
共 50 条
  • [1] Analysis of parametrically excited laminated composite joined conical-cylindrical shells
    Kamat, S
    Ganapathi, M
    Patel, BP
    [J]. COMPUTERS & STRUCTURES, 2001, 79 (01) : 65 - 76
  • [2] Nonlinear Oscillations and Stability of Parametrically Excited Cylindrical Shells
    Paulo B. Gonçalves
    Zenón J.G.N. Del Prado
    [J]. Meccanica, 2002, 37 : 569 - 597
  • [3] Nonlinear oscillations and stability of parametrically excited cylindrical shells
    Gonçalves, PB
    Del Prado, ZJGN
    [J]. MECCANICA, 2002, 37 (06) : 569 - 597
  • [4] Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries
    Goncalves, Paulo B.
    Silva, Frederico M. A.
    Del Prado, Zenon J. G. N.
    [J]. NONLINEAR DYNAMICS, 2007, 50 (1-2) : 121 - 145
  • [5] Nonlinear Dynamics of a Parametrically Excited Laminated Beam: Deterministic Excitation
    Lan, Xiangjun
    Feng, Zhihua
    Lin, Hong
    Zhu, Xiaodong
    [J]. FUNCTIONAL MANUFACTURING TECHNOLOGIES AND CEEUSRO II, 2011, 464 : 260 - +
  • [6] Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries
    Paulo B. Gonçalves
    Frederico M. A. Silva
    Zenón J. G. N. Del Prado
    [J]. Nonlinear Dynamics, 2007, 50 : 121 - 145
  • [7] ANALYSIS OF PARAMETRICALLY EXCITED SYSTEMS
    KU, YH
    YANG, TT
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1962, 274 (06): : 452 - &
  • [8] Nonlinear modes and traveling waves of parametrically excited cylindrical shells
    Kochurov, R.
    Avramov, K. V.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2010, 329 (11) : 2193 - 2204
  • [9] Effects of piezo actuated damping on parametrically excited laminated composite plates
    Bhattacharya, P.
    Rose, M.
    Homann, S.
    [J]. JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2006, 25 (08) : 801 - 813
  • [10] Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells
    Rodrigues, Lara
    Silva, Frederico M. A.
    Goncalves, Paulo B.
    Del Prado, Zenon J. G. N.
    [J]. THIN-WALLED STRUCTURES, 2014, 81 : 210 - 224