Nonlinear Dynamics of a Parametrically Excited Laminated Beam: Deterministic Excitation

被引:0
|
作者
Lan, Xiangjun [1 ]
Feng, Zhihua [1 ]
Lin, Hong [2 ]
Zhu, Xiaodong [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 2150021, Peoples R China
[2] Soochow Univ, Sch Elect Informat, Suzhou 2150021, Peoples R China
基金
中国国家自然科学基金;
关键词
Laminated beam; parametric excitation; nonlinear dynamics;
D O I
10.4028/www.scientific.net/KEM.464.260
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The nonlinear dynamic equation of a laminated beam subject to parametrically deterministic excitation is derived based on the general von Karman-type equations and the Reddy third-order shear deformation plate theory. The first mode parametric resonance is taken into consideration using Galerkin approach. The modulation equations are obtained with the method of multiple scales. The frequency-amplitude and force-amplitude characters are investigated. Results show that the nonlinear behaviors belong to hardening effect.
引用
收藏
页码:260 / +
页数:2
相关论文
共 50 条
  • [1] Nonlinear Dynamics of a Parametrically Excited Laminated Beam: Narrow-Band Random Excitation
    Lan, Xiangjun
    Feng, Zhihua
    Zhu, Xiaodong
    Lin, Hong
    [J]. ADVANCES IN MECHATRONICS TECHNOLOGY, 2011, 43 : 257 - +
  • [2] Parametrically excited viscoelastic beam-spring systems: nonlinear dynamics and stability
    Ghayesh, Mergen H.
    [J]. STRUCTURAL ENGINEERING AND MECHANICS, 2011, 40 (05) : 705 - 718
  • [3] Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam
    Zhang, W
    Wang, FX
    Yao, MH
    [J]. NONLINEAR DYNAMICS, 2005, 40 (03) : 251 - 279
  • [4] Nonlinear normal modes of a parametrically excited cantilever beam
    Yabuno, H
    Nayfeh, AH
    [J]. NONLINEAR DYNAMICS, 2001, 25 (1-3) : 65 - 77
  • [5] Global Bifurcations and Chaotic Dynamics in Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam
    Wei Zhang
    Fengxia Wang
    Minghui Yao
    [J]. Nonlinear Dynamics, 2005, 40 : 251 - 279
  • [6] Nonlinear Normal Modes of a Parametrically Excited Cantilever Beam
    Hiroshi Yabuno
    Ali H. Nayfeh
    [J]. Nonlinear Dynamics, 2001, 25 : 65 - 77
  • [7] Improved Modelling of a Nonlinear Parametrically Excited System with Electromagnetic Excitation
    Zaghari, Bahareh
    Rustighi, Emiliano
    Ghandchi Tehrani, Maryam
    [J]. VIBRATION, 2018, 1 (01): : 157 - 171
  • [8] Dynamics of a nonlinear parametrically excited partial differential equation
    Newman, WI
    Rand, RH
    Newman, AL
    [J]. CHAOS, 1999, 9 (01) : 242 - 253
  • [9] Nonlinear nonplanar dynamics of parametrically excited cantilever beams
    Arafat, HN
    Nayfeh, AH
    Chin, CM
    [J]. NONLINEAR DYNAMICS, 1998, 15 (01) : 31 - 61
  • [10] Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams
    Haider N. Arafat
    Ali H. Nayfeh
    Char-Ming Chin
    [J]. Nonlinear Dynamics, 1998, 15 : 31 - 61