LARGE DEVIATIONS FOR A REACTION-DIFFUSION MODEL

被引:46
|
作者
JONALASINIO, G
LANDIM, C
VARES, ME
机构
[1] UNIV ROUEN,FAC SCI,LAMS,F-76134 MONT ST AIGNAN,FRANCE
[2] IMPA,BR-22460 RIO JANEIRO,BRAZIL
关键词
D O I
10.1007/BF01195070
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain large deviation estimates for the empirical measure of a class of interacting particle systems. These consist of a superposition of Glauber and Kawasaki dynamics and are described, in the hydrodynamic limit, by a reaction diffusion equation. We extend results of Kipnis, Olla and Varadhan for the symmetric exclusion process, and provide an approximation scheme for the rate functional. Some physical implications of our results are briefly indicated.
引用
收藏
页码:339 / 361
页数:23
相关论文
共 50 条
  • [21] A reaction-diffusion model with nonlinearity driven diffusion
    Man-jun Ma
    Jia-jia Hu
    Jun-jie Zhang
    Ji-cheng Tao
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 290 - 302
  • [22] A reaction-diffusion model with nonlinearity driven diffusion
    Ma Man-jun
    Hu Jia-jia
    Zhang Jun-jie
    Tao Ji-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 290 - 302
  • [23] Coexistence of large amplitude stationary structures in a model of reaction-diffusion system
    Kawczyński, Andrzej L.
    Legawiec, Bartlomiej
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (2 I): : 021405 - 021401
  • [24] LARGE DEVIATIONS OF THE EMPIRICAL CURRENTS FOR A BOUNDARY-DRIVEN REACTION DIFFUSION MODEL
    Bodineau, Thierry
    Lagouge, Maxime
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (06): : 2282 - 2319
  • [25] The evolution of fast reaction:: a reaction-diffusion model
    Büger, M
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (04) : 543 - 554
  • [26] Reaction-diffusion models with large advection coefficients
    Bezuglyy, Andriy
    Lou, Yuan
    APPLICABLE ANALYSIS, 2010, 89 (07) : 983 - 1004
  • [27] A reaction-diffusion model for competing languages
    Walters, Caroline E.
    MECCANICA, 2014, 49 (09) : 2189 - 2206
  • [28] A reaction-diffusion model of stored bagasse
    Macaskill, C
    Sexton, MJ
    Gray, BF
    ANZIAM JOURNAL, 2001, 43 : 13 - 34
  • [29] A reaction-diffusion model of cancer invasion
    Gatenby, RA
    Gawlinski, ET
    CANCER RESEARCH, 1996, 56 (24) : 5745 - 5753
  • [30] Computing with a distributed reaction-diffusion model
    Bandini, S
    Mauri, G
    Pavesi, G
    Simone, C
    MACHINES, COMPUTATIONS, AND UNIVERSALITY, 2005, 3354 : 93 - 103