NAR ESTIMATORS OF SPATIAL COVARIANCE MATRICES FOR ADAPTIVE ARRAY DETECTION

被引:5
|
作者
ELAYADI, MH
机构
[1] Military Technical College, Cairo, Koubri El Kobba
关键词
D O I
10.1109/78.134408
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The maximum likelihood estimator of a noise field spatial covariance matrix is much perturbed by signal presence. The use of this estimator in adaptive array detection causes SNR loss that increases monotonically with input SNR. This correspondence extends the theory of noise-alone-reference (NAR) power estimation to the estimation of spatial covariance matrices. A NAR covariance estimator insensitive to signal presence is derived. The SNR loss incurred by using this estimator is independent of the input SNR and is less than that encountered with the maximum likelihood covariance estimator given that the same number of uncorrelated snapshots is available to both estimators. The analysis assumes first a deterministic signal. The results are extended and generalized to signals with unknown parameters or random signals. For the random signal case, generalized and quasi-NAR covariance estimators are presented.
引用
收藏
页码:1682 / 1686
页数:5
相关论文
共 50 条
  • [21] Double shrinkage estimators for large sparse covariance matrices
    Chang, S. -M.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (08) : 1497 - 1511
  • [22] A MAXIMAL INVARIANT FRAMEWORK FOR ADAPTIVE DETECTION WITH STRUCTURED AND UNSTRUCTURED COVARIANCE MATRICES
    BOSE, S
    STEINHARDT, AO
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (09) : 2164 - 2175
  • [23] Enhanced covariance matrix estimators in adaptive beamforming
    Abrahamsson, Richard
    Selen, Yngve
    Stoica, Petre
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PTS 1-3, 2007, : 969 - +
  • [24] Elementary Estimators for Sparse Covariance Matrices and other Structured Moments
    Yang, Eunho
    Lozano, Aurelie C.
    Ravikumar, Pradeep
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 397 - 405
  • [25] Positive-definite thresholding estimators of covariance matrices with zeros
    Kim, Rakheon
    Pourahmadi, Mohsen
    Garcia, Tanya P.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 197
  • [26] EXPLICIT MAXIMUM LIKELIHOOD ESTIMATORS FOR CERTAIN PATTERNED COVARIANCE MATRICES
    ROGERS, GS
    YOUNG, DL
    [J]. COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1977, 6 (02): : 121 - 133
  • [27] On eigenvalue decomposition estimators of centro-symmetric covariance matrices
    Delmas, JP
    [J]. SIGNAL PROCESSING, 1999, 78 (01) : 101 - 116
  • [28] ROBUST SHRINKAGE M-ESTIMATORS OF LARGE COVARIANCE MATRICES
    Auguin, Nicolas
    Morales-Jimenez, David
    McKay, Matthew
    Couillet, Romain
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [29] BREAKDOWN POINTS OF AFFINE EQUIVARIANT ESTIMATORS OF MULTIVARIATE LOCATION AND COVARIANCE MATRICES
    LOPUHAA, HP
    ROUSSEEUW, PJ
    [J]. ANNALS OF STATISTICS, 1991, 19 (01): : 229 - 248
  • [30] Some equalities and inequalities for covariance matrices of estimators under linear model
    Tian, Y.
    [J]. STATISTICAL PAPERS, 2017, 58 (02) : 467 - 484