A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models

被引:1
|
作者
Iwasawa, Masamune [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[2] Japan Soc Promot Sci, Chiyoda Ku, Tokyo 1020083, Japan
来源
ECONOMETRICS | 2015年 / 3卷 / 03期
关键词
specification test; multinomial choice models; parametric bootstrap; nonparametric methods;
D O I
10.3390/econometrics3030667
中图分类号
F [经济];
学科分类号
02 ;
摘要
Estimation results obtained by parametric models may be seriously misleading when the model is misspecified or poorly approximates the true model. This study proposes a test that jointly tests the specifications of multiple response probabilities in unordered multinomial choice models. The test statistic is asymptotically chi-square distributed, consistent against a fixed alternative and able to detect a local alternative approaching to the null at a rate slower than the parametric rate. We show that rejection regions can be calculated by a simple parametric bootstrap procedure, when the sample size is small. The size and power of the tests are investigated by Monte Carlo experiments.
引用
收藏
页码:667 / 697
页数:31
相关论文
共 50 条
  • [21] Multinomial Ordinal Response Models
    Klicnar, Martin
    Cincurova, Lenka
    [J]. MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 386 - 391
  • [22] Multinomial Processing Tree Models for Discrete Choice
    Batchelder, William H.
    Hu, Xiangen
    Smith, Jared B.
    [J]. ZEITSCHRIFT FUR PSYCHOLOGIE-JOURNAL OF PSYCHOLOGY, 2009, 217 (03): : 149 - 158
  • [23] Choice of test for association in small sample unordered rxc tables
    Lydersen, S.
    Pradhan, V.
    Enchaudhuri, P. S.
    Laake, P.
    [J]. STATISTICS IN MEDICINE, 2007, 26 (23) : 4328 - 4343
  • [24] Maximum likelihood estimation of cell probabilities in constrained multinomial models
    Rothblum, UG
    Vardi, Y
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 61 (1-2) : 141 - 161
  • [26] On generalized multinomial models and joint percentile estimation
    Das, I.
    Mukhopadhyay, S.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 145 : 190 - 203
  • [27] Analysis of residential water heater choice using multinomial choice models
    [J]. 1600, Architectural Institute of Japan (78):
  • [28] SPECIFICATION TESTS FOR PROBABILISTIC CHOICE MODELS
    HOROWITZ, J
    [J]. TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 1982, 16 (5-6) : 383 - 394
  • [29] Assisted specification of discrete choice models
    Ortelli, Nicola
    Hillel, Tim
    Pereira, Francisco C.
    de Lapparent, Matthieu
    Bierlaire, Michel
    [J]. JOURNAL OF CHOICE MODELLING, 2021, 39
  • [30] Robustness of Student link function in multinomial choice models
    Peyhardi, Jean
    [J]. JOURNAL OF CHOICE MODELLING, 2020, 36