FRAMES AND STABLE BASES FOR SHIFT-INVARIANT SUBSPACES OF L(2)(R(D))

被引:243
|
作者
RON, A [1 ]
SHEN, ZW [1 ]
机构
[1] NATL UNIV SINGAPORE,DEPT MATH,SINGAPORE 0511,SINGAPORE
关键词
RIESZ BASES; STABLE BASES; SHIFT-INVARIANT BASES; PSI SPACES; FSI SPACES; FRAMES; BESSEL SEQUENCES; WAVELETS; SPLINES;
D O I
10.4153/CJM-1995-056-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a countable fundamental set in a Hilbert space H, and let T be the operator GRAPHICS Whenever T is well-defined and bounded, X is said to be a Bessel sequence. If, in addition, ran 7 is closed, then X is a frame. Finally, a frame whose corresponding T is injective is a stable basis (also known as a Riesz basis). This paper considers the above three properties for subspaces H of L(2)(R(d)), and for sets X of the form X = {phi(.-alpha):phi is an element of Phi, alpha is an element of Z(d)}, with Phi either a singleton, a finite set, or, more generally a countable set. The analysis is performed on the Fourier domain, where the two operators TT* and TT are decomposed into a collection of simpler ''fiber'' operators. The main theme of the entire analysis is the characterization of each of the above three properties in terms of the analogous property of these simpler operators.
引用
收藏
页码:1051 / 1094
页数:44
相关论文
共 50 条
  • [21] Sufficient Conditions for Shift-Invariant Systems to be Frames in L2(Rn)
    Deng Feng LI
    Tao QIAN
    Acta Mathematica Sinica,English Series, 2013, (08) : 1629 - 1636
  • [22] Frames by Iterations in Shift-invariant Spaces
    Aguilera, Alejandra
    Cabrelli, Carlos
    Carbajal, Diana
    Paternostro, Victoria
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [23] Frames for Weighted Shift-invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 897 - 912
  • [24] Construction of Frames for Shift-Invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [25] Frames for Weighted Shift-invariant Spaces
    Stevan Pilipović
    Suzana Simić
    Mediterranean Journal of Mathematics, 2012, 9 : 897 - 912
  • [26] Frames and generalized shift-invariant systems
    Christensen, Ole
    Pseudo-Differential Operators and Related Topics, 2006, 164 : 193 - 209
  • [27] Frames of periodic shift-invariant spaces
    Chen, DR
    JOURNAL OF APPROXIMATION THEORY, 2000, 107 (02) : 204 - 211
  • [28] Anisotropic dilations of shift-invariant subspaces and approximation properties in L2(Rd)
    Cifuentes, P.
    San Antolin, A.
    Soto-Bajo, M.
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (5-6) : 525 - 539
  • [29] THE STRUCTURE OF SHIFT-INVARIANT SUBSPACES OF SOBOLEV SPACES
    Aksentijevi'c, A.
    Aleksi'c, S.
    Pilipovi'c, S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2024, 218 (02) : 177 - 191
  • [30] Symmetric shift-invariant subspaces and harmonic maps
    Aleman, Alexandru
    Pacheco, Rui
    Wood, John C.
    MATHEMATISCHE ZEITSCHRIFT, 2021, 299 (1-2) : 183 - 202