BOND COVERING IN THE LATTICE-COVERING PROBLEM

被引:0
|
作者
CASSI, D
SONCINI, L
机构
[1] Dipartimento di Fisica, Università di Parma, 43100 Parma, viale delle Scienze
来源
PHYSICAL REVIEW A | 1992年 / 45卷 / 08期
关键词
D O I
10.1103/PhysRevA.45.6107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we study the problem of the covering of the bonds of a finite lattice by a random walk that visits all the lattice sites. One-, two-, three-, and four-dimensional regular periodic lattices are considered. While in one-dimension the problem is trivial, our numerical results show very interesting features in higher dimensions, concerning the set of nonvisited bonds when the site covering has been completed. The number of such bonds as a function of the lattice size follows a square-logarithmic law in two dimensions and a power law in three and four dimensions, suggesting the presence of a fractal geometry.
引用
收藏
页码:6107 / 6108
页数:2
相关论文
共 50 条
  • [21] The Ordered Covering Problem
    Feige, Uriel
    Hitron, Yael
    ALGORITHMICA, 2018, 80 (10) : 2874 - 2908
  • [22] A Covering Problem for Hypercubes
    Hoffmann, Joerg
    Kupferschmid, Sebastian
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1523 - 1524
  • [23] On the covering Steiner problem
    Gupta, A
    Srinivasan, A
    FST TCS 2003: FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE, 2003, 2914 : 244 - 251
  • [24] A Covering Problem for Tori
    Patric R. J. Östergård
    Taneli Riihonen
    Annals of Combinatorics, 2003, 7 (3) : 357 - 363
  • [25] A best covering problem
    Knudsen, FF
    Seip, K
    Ulanovskii, AM
    MATHEMATICA SCANDINAVICA, 1995, 77 (02) : 272 - 280
  • [26] On a Covering Problem in the Hypercube
    Ozkahya, Lale
    Stanton, Brendon
    GRAPHS AND COMBINATORICS, 2015, 31 (01) : 235 - 242
  • [27] Solution to the covering problem
    Shieh, Bih-Sheue
    INFORMATION SCIENCES, 2013, 222 : 626 - 633
  • [28] On conditional covering problem
    Sivan B.
    Harini S.
    Rangan C.P.
    Mathematics in Computer Science, 2010, 3 (1) : 97 - 107
  • [29] The Ordered Covering Problem
    Uriel Feige
    Yael Hitron
    Algorithmica, 2018, 80 : 2874 - 2908
  • [30] THE COVERING RADIUS OF THE LEECH LATTICE
    CONWAY, JH
    PARKER, RA
    SLOANE, NJA
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779): : 261 - 290