Logarithmic forms and non-dicritic foliations

被引:5
|
作者
Cerveau, Dominique [1 ]
机构
[1] Univ Rennes 1, CNRS, Membre Inst Univ Franc, IRMAR,UMR 6625, F-35042 Rennes, France
来源
关键词
logarithmic meromorphic forms; holomorphic foliations;
D O I
10.5427/jsing.2014.9d
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an algebraic codimension 1 foliation F on the projective space P-C(n), under reasonable conditions on the nature of the singular set, one has that the degree of any invariant variety is at most d + 2, where d is the degree of F (Carnicer [Car94], Cerveau-Lins-Neto [CLN91]). In this work we study the extreme case where the degree of the foliation attains its upper bound d + 2, so completing results by Brunella [Bru97, CLN91].
引用
收藏
页码:50 / 55
页数:6
相关论文
共 50 条