THE ANNIHILATING RANDOM-WALK AS A MODEL FOR DOMAIN GROWTH IN ONE-DIMENSION

被引:6
|
作者
MULLLER, M
PAUL, W
机构
[1] Institut für Physik, Johannes Gutenberg Universität Staudinger Weg 7, Mainz
来源
EUROPHYSICS LETTERS | 1994年 / 25卷 / 02期
关键词
D O I
10.1209/0295-5075/25/2/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We are presenting results of a Monte Carlo simulation of the one-dimensional annihilating random walk (ARW). If the system size is not very large with respect to the mean interparticle distance, time-dependent finite-size effects arise and additional correlations between particles are introduced. Monte Carlo results are analysed in terms of simple analytical approximations. Using the equivalence to the kinetic Ising model at zero temperature and zero initial magnetization, we investigate the dependence of the square of the magnetization on the interparticle distance distribution. Finally, neglecting correlations, an analytical approximation for the asymptotic interparticle distance distribution in an infinite system is derived.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [31] A RANDOM-WALK MODEL OF DIGIT COMPARISON
    POLTROCK, SE
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1989, 33 (02) : 131 - 162
  • [32] A RESTRICTED RANDOM-WALK ON A ONE-DIMENSIONAL RANDOM CHAIN
    PRASAD, MA
    [J]. PHYSICS LETTERS A, 1986, 117 (05) : 217 - 220
  • [33] An extension of the exemplar-based random-walk model to separable-dimension stimuli
    Cohen, AL
    Nosofsky, RM
    [J]. JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2003, 47 (02) : 150 - 165
  • [34] GROWTH-RATES IN THE BRANCHING RANDOM-WALK
    BIGGINS, JD
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 48 (01): : 17 - 34
  • [35] CANADIAN ECONOMIC-GROWTH - RANDOM-WALK OR JUST A WALK
    CRIBARINETO, F
    [J]. APPLIED ECONOMICS, 1994, 26 (05) : 437 - 444
  • [36] A random-walk approach to diffusion controlled growth
    Larsson, H
    Ågren, J
    [J]. SCRIPTA MATERIALIA, 2003, 49 (06) : 521 - 526
  • [37] Perturbations of Voter model in one-dimension
    Newman, C. M.
    Ravishankar, K.
    Schertzer, E.
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [38] The excited random walk in one dimension
    Antal, T
    Redner, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12): : 2555 - 2577
  • [39] THE HAUSDORFF DIMENSION OF THE TWO-DIMENSIONAL EDWARDS RANDOM-WALK
    KOUKIOU, F
    PASCHE, J
    PETRITIS, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1385 - 1391
  • [40] CRITICAL-BEHAVIOR OF RANDOM SURFACES IN ONE-DIMENSION
    POLCHINSKI, J
    [J]. NUCLEAR PHYSICS B, 1990, 346 (2-3) : 253 - 263