COVER SET LATTICES

被引:11
|
作者
ADAMS, ME [1 ]
SICHLER, J [1 ]
机构
[1] UNIV MANITOBA,WINNIPEG R3T 2N2,MANITOBA,CANADA
关键词
D O I
10.4153/CJM-1980-089-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1177 / 1205
页数:29
相关论文
共 50 条
  • [41] Algorithms for connected set cover problem and fault-tolerant connected set cover problem
    Zhang, Zhao
    Gao, Xiaofeng
    Wu, Weili
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 812 - 817
  • [42] Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices
    Schmidt, E. Tamas
    ALGEBRA UNIVERSALIS, 2010, 64 (1-2) : 101 - 102
  • [43] Cover-preserving embeddings of finite length semimodular lattices into simple semimodular lattices
    E. Tamás Schmidt
    Algebra universalis, 2010, 64 : 101 - 102
  • [44] A note on 'Algorithms for connected set cover problem and fault-tolerant connected set cover problem'
    Ren, Wei
    Zhao, Qing
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (45) : 6451 - 6454
  • [45] Set It and Forget It: Approximating the Set Once Strip Cover Problem
    Amotz Bar-Noy
    Ben Baumer
    Dror Rawitz
    Algorithmica, 2017, 79 : 368 - 386
  • [46] Solving Set Cover and Dominating Set via Maximum Satisfiability
    Lei, Zhendong
    Cai, Shaowei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1569 - 1576
  • [47] A tighter analysis of set cover greedy algorithm for test set
    Cui, Peng
    Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, 2007, 4614 : 24 - 35
  • [48] A Θ(log n)-approximation for the set cover problem with set ownership
    Gonen, Mira
    Shavitt, Yuval
    INFORMATION PROCESSING LETTERS, 2009, 109 (03) : 183 - 186
  • [49] Set It and Forget It: Approximating the Set Once Strip Cover Problem
    Bar-Noy, Amotz
    Baumer, Ben
    Rawitz, Dror
    ALGORITHMICA, 2017, 79 (02) : 368 - 386
  • [50] EQUATIONAL CLASSES WHICH COVER CLASS OF DISTRIBUTIVE LATTICES
    FRIED, E
    ACTA SCIENTIARUM MATHEMATICARUM, 1975, 37 (1-2): : 37 - 40