SPECTRAL DIFFUSION IN A ONE-DIMENSIONAL PERCOLATION MODEL

被引:55
|
作者
ALEXANDER, S
BERNASCONI, J
ORBACH, R
机构
来源
PHYSICAL REVIEW B | 1978年 / 17卷 / 11期
关键词
D O I
10.1103/PhysRevB.17.4311
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:4311 / 4314
页数:4
相关论文
共 50 条
  • [41] Spectral stability of one-dimensional reaction–diffusion equation with symmetric and asymmetric potential
    N. Varatharajan
    Anirvan DasGupta
    [J]. Nonlinear Dynamics, 2015, 80 : 1257 - 1269
  • [42] Ergodicity and Percolation for Variants of One-dimensional Voter Models
    Mohylevskyy, Y.
    Newman, C. M.
    Ravishankar, K.
    [J]. ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 485 - 504
  • [43] ONE-DIMENSIONAL PERCOLATION WITH MANY PARTICLES PER SITE
    BINDER, PM
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 4099 - 4101
  • [44] Contact process on one-dimensional long range percolation
    Can, Van Hao
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 11
  • [46] PERCOLATION AND ONE-DIMENSIONAL TO 3-DIMENSIONAL CROSSOVER IN THE ANDERSON LOCALIZATION
    GEFEN, Y
    AZBEL, MY
    [J]. JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1982, 15 (21): : L655 - L661
  • [47] A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice
    Maksym, T
    Jeffries, MO
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2000, 105 (C11) : 26313 - 26331
  • [48] On the optimal stopping of a one-dimensional diffusion
    Lamberton, Damien
    Zervos, Mihail
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 : 1 - 49
  • [49] Rate theory for one-dimensional diffusion
    Borodin, VA
    [J]. PHYSICA A, 1998, 260 (3-4): : 467 - 478
  • [50] DIFFUSION IN A ONE-DIMENSIONAL DISORDERED SYSTEM
    STEPHEN, MJ
    KARIOTIS, R
    [J]. PHYSICAL REVIEW B, 1982, 26 (06): : 2917 - 2925