COMPUTING COEFFICIENTS OF HIGH-ORDER POLYNOMIALS

被引:4
|
作者
ACKROYD, MH
机构
关键词
D O I
10.1049/el:19700497
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:715 / &
相关论文
共 50 条
  • [21] A study of the high-order aberration coefficients using Lie algebra
    Matsuya, M
    Saito, M
    Nakagawa, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 385 (03): : 456 - 462
  • [22] Correctness conditions for high-order differential equations with unbounded coefficients
    Kordan N. Ospanov
    Boundary Value Problems, 2021
  • [23] Calibrating method for high-order coefficients in accelerometer error model
    Chen, Xi-Jun
    Ren, Shun-Qing
    Li, Wei
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2010, 18 (04): : 508 - 512
  • [24] Correctness conditions for high-order differential equations with unbounded coefficients
    Ospanov, Kordan N.
    BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [25] NONSTATIONARY INTERPOLATORY SUBDIVISION SCHEMES REPRODUCING HIGH-ORDER EXPONENTIAL POLYNOMIALS
    Zhou, Jie
    Zheng, Hongchan
    Li, Zhaohong
    Song, Weijie
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (07) : 2429 - 2457
  • [26] PIPELINE MULTIPLIER OF POLYNOMIALS MODULO WITH ANALYSIS OF HIGH-ORDER BITS OF THE MULTIPLIER
    Kalimoldayev, M.
    Tynymbayev, S.
    Ibraimov, M.
    Magzom, M.
    Kozhagulov, Y.
    Namazbayev, T.
    BULLETIN OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN, 2020, (04): : 13 - 20
  • [27] Why High-Order Polynomials Should Not Be Used in Regression Discontinuity Designs
    Gelman, Andrew
    Imbens, Guido
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (03) : 447 - 456
  • [28] Modal Reconstruction Based on Arbitrary High-Order Zernike Polynomials for Deflectometry
    Nguyen, Duy-Thai
    Nguyen, Kim Cuc Thi
    Cao, Binh X.
    Tran, Van-Thuc
    Vu, Tiendung
    Bui, Ngoc-Tam
    MATHEMATICS, 2023, 11 (18)
  • [29] A class of high-order Runge-Kutta-Chebyshev stability polynomials
    O'Sullivan, Stephen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 300 : 665 - 678
  • [30] HIGH-ORDER METHODS FOR COMPUTING DISTANCES TO IMPLICITLY DEFINED SURFACES
    Saye, Robert I.
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2014, 9 (01) : 107 - 141