Z2-FIXED SETS OF STATIONARY POINT FREE Z4-ACTIONS

被引:0
|
作者
RODRIGUES, CI
机构
关键词
D O I
10.2307/2159233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the question: Which classes in the unoriented bordism group of free Z2-actions can be realized as the Z2-fixed set of stationary point free Z4-action on a closed manifold with Z2-fixed point set having constant codimension k ?
引用
收藏
页码:821 / 828
页数:8
相关论文
共 50 条
  • [31] Fixed-point free circle actions on 4-manifolds
    Chen, Weimin
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (06): : 3253 - 3303
  • [32] Z-Actions on AH Algebras and Z2-Actions on AF Algebras
    Matui, Hiroki
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (02) : 529 - 551
  • [33] HADAMARD DIFFERENCE SETS OVER AN EXTENSION OF Z/4Z
    YAMAMOTO, K
    YAMADA, M
    UTILITAS MATHEMATICA, 1988, 34 : 169 - 178
  • [34] Some properties of stationary determinantal point processes on Z
    Fan, Aihua
    Fan, Shilei
    Qiu, Yanqi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2018, 98 (03): : 517 - 535
  • [35] Circle actions on oriented manifolds with discrete fixed point sets and classification in dimension 4
    Jang, Donghoon
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 133 : 181 - 194
  • [36] Progression-free sets in Z4n are exponentially small
    Croot, Ernie
    Lev, Vsevolod F.
    Pach, Peter Pal
    ANNALS OF MATHEMATICS, 2017, 185 (01) : 331 - 337
  • [37] Asymptotically free four-Fermi theory in 4 dimensions at the z=3 Lifshitz-like fixed point
    Dhar, Avinash
    Mandal, Gautam
    Wadia, Spenta R.
    PHYSICAL REVIEW D, 2009, 80 (10):
  • [38] SPECTRAL DECOMPOSITION OF k-TYPE NONWANDERING SETS FOR Z2-ACTIONS
    Kim, Daejung
    Lee, Seunghee
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 387 - 400
  • [39] LINEARIZING SOME Z/2Z ACTIONS ON AFFINE SPACE
    JURKIEWICZ, J
    COMPOSITIO MATHEMATICA, 1990, 76 (1-2) : 243 - 245
  • [40] FIXED POINT RESULTS FOR ADMISSIBLE Z-CONTRACTIONS
    Cvetkovic, Marija
    Karapinar, Erdal
    Rakocevic, Vladimir
    FIXED POINT THEORY, 2018, 19 (02): : 515 - 526