A HYBRID OF THEOREMS OF VINOGRADOV AND PIATETSKI-SHAPIRO

被引:30
|
作者
BALOG, A [1 ]
FRIEDLANDER, J [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1361 BUDAPEST 5,HUNGARY
关键词
D O I
10.2140/pjm.1992.156.45
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was proved by Vinogradov that every sufficiently large odd integer can be written as the sum of three primes. We show that this remains the case when the primes so utilized are restricted to an explicit thin set. One may take, for example, the "Piatetski-Shapiro primes" p = [n1/gamma] with any gamma > 20/21 . By a similar argument it would follow that, for arbitrary theta, 0 < theta < 1 , and suitable lambda = lambda(theta) > 0, one may take the set of primes for which {p(theta)} < p(-lambda).
引用
收藏
页码:45 / 62
页数:18
相关论文
共 50 条
  • [31] Rough values of Piatetski-Shapiro sequences
    Yıldırım Akbal
    Monatshefte für Mathematik, 2018, 185 : 1 - 15
  • [32] FRIABLE VALUES OF PIATETSKI-SHAPIRO SEQUENCES
    Akbal, Yildirim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) : 4255 - 4268
  • [33] Piatetski-Shapiro primes in arithmetic progressions
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2023, 60 (03): : 677 - 692
  • [34] Coprimality of integers in Piatetski-Shapiro sequences
    Watcharapon Pimsert
    Teerapat Srichan
    Pinthira Tangsupphathawat
    Czechoslovak Mathematical Journal, 2023, 73 : 197 - 212
  • [35] Diophantine approximation by Piatetski-Shapiro primes
    Dimitrov, S. I.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (04): : 875 - 883
  • [36] On Hecke eigenvalues at Piatetski-Shapiro primes
    Baier, Stephan
    Zhao, Liangyi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 175 - 201
  • [37] CHARACTER SUMS WITH PIATETSKI-SHAPIRO SEQUENCES
    Baker, Roger C.
    Banks, William D.
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 393 - 416
  • [38] Piatetski-Shapiro primes in a Beatty sequence
    Guo, Victor Z.
    JOURNAL OF NUMBER THEORY, 2015, 156 : 317 - 330
  • [39] Diophantine approximation by Piatetski-Shapiro primes
    S. I. Dimitrov
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 875 - 883
  • [40] Rough values of Piatetski-Shapiro sequences
    Akbal, Yildirim
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (01): : 1 - 15