A BAYESIAN-APPROACH TO TIME-VARYING CROSS-SECTIONAL REGRESSION-MODELS

被引:13
|
作者
LIU, LM
HANSSENS, DM
机构
关键词
D O I
10.1016/0304-4076(81)90099-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:341 / 356
页数:16
相关论文
共 50 条
  • [1] TIME-VARYING PARAMETER REGRESSION-MODELS
    BECK, N
    [J]. AMERICAN JOURNAL OF POLITICAL SCIENCE, 1983, 27 (03) : 557 - 600
  • [2] CROSS-SECTIONAL APPROACH FOR CLUSTERING TIME-VARYING DATA
    KOSMELJ, K
    BATAGELJ, V
    [J]. JOURNAL OF CLASSIFICATION, 1990, 7 (01) : 99 - 109
  • [3] ESTIMATION AND TESTING OF TIME-VARYING COEFFICIENT REGRESSION-MODELS IN THE PRESENCE OF LINEAR RESTRICTIONS
    LEYBOURNE, SJ
    [J]. JOURNAL OF FORECASTING, 1993, 12 (01) : 49 - 62
  • [4] Testing constant cross-sectional dependence with time-varying marginal distributions in parametric models
    Kaldorf, Matthias
    Wied, Dominik
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2022, 26 (01): : 1 - 24
  • [5] Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models
    Hauzenberger, Niko
    Huber, Florian
    Koop, Gary
    Onorante, Luca
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1904 - 1918
  • [6] ASSESSING THE EFFECT OF TIME-VARYING COVARIATES IN CROSS-SECTIONAL STUDIES
    MEINERT, R
    FRISCHER, T
    KUEHR, J
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 1994, 47 (09) : 983 - 991
  • [7] Bayesian time-varying quantile regression on exceedance
    do Nascimento, Fernando Ferraz
    Bourguignon, Marcelo
    [J]. STATISTICS, 2022, 56 (06) : 1207 - 1224
  • [8] Bayesian time-varying quantile regression to extremes
    Do Nascimento, Fernando Ferraz
    Bourguignon, Marcelo
    [J]. ENVIRONMETRICS, 2020, 31 (02)
  • [9] INFERENCE OF TIME-VARYING REGRESSION MODELS
    Zhang, Ting
    Wu, Wei Biao
    [J]. ANNALS OF STATISTICS, 2012, 40 (03): : 1376 - 1402
  • [10] Regression models for time-varying extremes
    Lima, Stenio Rodrigues
    do Nascimento, Fernando Ferraz
    da Silva Ferraz, Valmaria Rocha
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (02) : 235 - 249