INVERSE PROBLEM METHOD FOR PERTURBED NONLINEAR SCHRODINGER EQUATION

被引:35
|
作者
KARPMAN, VI [1 ]
MASLOV, EM [1 ]
机构
[1] ACAD SCI USSR, INST TERR MAGNETISM IONOSPHERE & RADIOWAVE PROPAGA, MOSCOW V-71, USSR
关键词
D O I
10.1016/0375-9601(77)90330-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:355 / 357
页数:3
相关论文
共 50 条
  • [31] Inverse Problem for the Schrodinger Equation in Dimension 3
    Ndiaye, Fagueye
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [32] Exponential instability in an inverse problem for the Schrodinger equation
    Mandache, N
    INVERSE PROBLEMS, 2001, 17 (05) : 1435 - 1444
  • [33] Semiclassical limit of an inverse problem for the Schrodinger equation
    Chen, Shi
    Li, Qin
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (03)
  • [34] Increasing stability for the inverse problem for the Schrodinger equation
    Choudhury, Anupam Pal
    Heck, Horst
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 606 - 614
  • [35] Uniqueness and stability in an inverse problem for the Schrodinger equation
    Baudouin, L
    Puel, JP
    INVERSE PROBLEMS, 2002, 18 (06) : 1537 - 1554
  • [36] An identification problem for a nonlinear Schrodinger equation
    Yagubov, GY
    Musaeva, MA
    DIFFERENTIAL EQUATIONS, 1997, 33 (12) : 1695 - 1702
  • [37] An Identification Problem For Nonlinear Schrodinger Equation
    Aksoy, Nigar Yildirim
    Yagub, Gabil
    Aksoy, Eray
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [38] The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrodinger equation with Kerr law nonlinearity
    Mahak, Nadia
    Akram, Ghazala
    OPTIK, 2020, 207
  • [39] New optical solitons for perturbed stochastic nonlinear Schrodinger equation by functional variable method
    Mohamed, E. M.
    El-Kalla, I. L.
    Tarabia, A. M. K.
    Kader, A. H. Abdel
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (07)
  • [40] Some optical soliton solutions to the perturbed nonlinear Schrodinger equation by modified Khater method
    Khater, Mostafa M. A.
    Anwar, Sadia
    Tariq, Kalim U.
    Mohamed, Mohamed S.
    AIP ADVANCES, 2021, 11 (02)