Using the coefficient of determination R-2 to test the significance of multiple linear regression

被引:39
|
作者
Quinino, Roberto C. [1 ]
Reis, Edna A. [1 ]
Bessegato, Lupercio F. [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Estatist, ICEx, Belo Horizonte, MG, Brazil
[2] Univ Fed Juiz de Fora, Dept Estatist, ICE, Juiz de Fora, Brazil
关键词
Teaching; Linear regression; Coefficient of determination; R-2; Beta distribution;
D O I
10.1111/j.1467-9639.2012.00525.x
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 50 条
  • [41] Three predictive power measures for generalized linear models: The entropy coefficient of determination, the entropy correlation coefficient and the regression correlation coefficient
    Eshima, Nobuoki
    Tabata, Minoru
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (11) : 3049 - 3058
  • [42] A new approach in adsorption modeling using random forest regression, Bayesian multiple linear regression, and multiple linear regression: 2,4-D adsorption by a green adsorbent
    Beigzadeh, Bahareh
    Bahrami, Mehdi
    Amiri, Mohammad Javad
    Mahmoudi, Mohammad Reza
    WATER SCIENCE AND TECHNOLOGY, 2020, 82 (08) : 1586 - 1602
  • [43] POWER CYCLING AND RAMP TEST IN R-2 AND MIHAMA UNIT-2 FOR MHI PWR FUELS
    BABA, T
    TAKAHASHI, T
    KUBO, H
    FUJIWARA, Y
    KONDO, Y
    RES MECHANICA, 1985, 16 (04): : 231 - 240
  • [44] Using multiple linear regression in pharmacy education scholarship
    Olsen, Amanda A.
    McLaughlin, Jacqueline E.
    Harpe, Spencer E.
    CURRENTS IN PHARMACY TEACHING AND LEARNING, 2020, 12 (10) : 1258 - 1268
  • [45] Fruit firmness prediction using multiple linear regression
    Ivanovski, Tomislav
    Zhang, Guoxiang
    Jemric, Tomislav
    Gulic, Marko
    Matetic, Maja
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 1306 - 1311
  • [46] Using multiple linear regression to forecast the number of asthmatics
    Gabda, Darmesah
    Abdullah, Noraini
    Budin, Kamsia
    Lim, C. K.
    PROCEEDINGS OF THE 2ND WSEAS INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: MODERN TOPICS OF COMPUTER SCIENCE, 2008, : 256 - +
  • [47] Water Quality Analysis Using Multiple Linear Regression
    Shah, Nishil
    Tiwari, Srishti
    Vashishtha, Vidushi
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (01): : 915 - 921
  • [48] FACTORS THAT INFLUENCE THE VALUE OF THE COEFFICIENT OF DETERMINATION IN SIMPLE LINEAR AND NONLINEAR-REGRESSION MODELS
    CORNELL, JA
    BERGER, RD
    PHYTOPATHOLOGY, 1987, 77 (01) : 63 - 70
  • [49] IDENTIFYING PROXY SETS IN MULTIPLE LINEAR-REGRESSION - AN AID TO BETTER COEFFICIENT INTERPRETATION
    BOOTH, GD
    NICCOLUCCI, MJ
    SCHUSTER, EG
    USDA FOREST SERVICE INTERMOUNTAIN RESEARCH STATION RESEARCH PAPER, 1994, (470): : 1 - 13
  • [50] Suppression and enhancement in multiple linear regression: A viewpoint from the perspective of a semipartial correlation coefficient
    Hsu, Szu-Yuan
    Chiang, Jeng-Tung
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (07) : 2057 - 2072