Hypercomplex Numbers in the Theory of Physical Structures

被引:0
|
作者
Mikhailichenko, G. G. [1 ]
Muradov, R. M. [1 ]
机构
[1] Gorny Altai State Univ, Ul Lenkina 1, Gorno Altaisk 649000, Russia
关键词
complex number; physical structure;
D O I
10.3103/S1066369X08100034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hypercomplex numbers are used for a classification of physical structures.
引用
收藏
页码:20 / 24
页数:5
相关论文
共 50 条
  • [21] Hypercomplex structures on Stiefel manifolds
    Boyer, CP
    Galicki, K
    Mann, BM
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (01) : 81 - 105
  • [22] Widely Linear SIMO Filtering for Hypercomplex Numbers
    Schulz, Dominik
    Seitz, Jochen
    Lustosa da Costa, Joao Paulo C.
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [23] Hypercomplex Polynomials, Vietoris' Rational Numbers and a Related Integer Numbers Sequence
    Cacao, Isabel
    Falcao, Maria Irene
    Malonek, Helmuth
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (05) : 1059 - 1076
  • [24] Commutative Hypercomplex Numbers and the Geometry of Two Sets
    Kyrov, Vladimir A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2020, 13 (03): : 373 - 382
  • [25] Projective Cross-ratio on Hypercomplex Numbers
    Brewer, Sky
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 1 - 14
  • [26] Projective Cross-ratio on Hypercomplex Numbers
    Sky Brewer
    Advances in Applied Clifford Algebras, 2013, 23 : 1 - 14
  • [27] Jumps, folds and hypercomplex structures
    Roger Bielawski
    Carolin Peternell
    manuscripta mathematica, 2020, 163 : 291 - 298
  • [28] Hypercomplex Polynomials, Vietoris’ Rational Numbers and a Related Integer Numbers Sequence
    Isabel Cação
    Maria Irene Falcão
    Helmuth Malonek
    Complex Analysis and Operator Theory, 2017, 11 : 1059 - 1076
  • [29] Rings of hypercomplex numbers for NT Fourier transforms
    Vanwormhoudt, MC
    SIGNAL PROCESSING, 1998, 67 (02) : 189 - 198
  • [30] Hypercomplex structures on Kahler manifolds
    Verbitsky, M
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (06) : 1275 - 1283