ON LEVY FLIGHTS IN POTENTIAL WELL

被引:0
|
作者
Sliusarenko, O. Yu. [1 ]
机构
[1] Kharkov Natl Univ, 31,Kurchatov Ave, UA-61108 Kharkov, Ukraine
来源
UKRAINIAN JOURNAL OF PHYSICS | 2007年 / 52卷 / 03期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The motion of an overdamped Levy particle (a particle being under the influence of an external random force with the Levy distribution law) in a potential well (a generalized Kramers' problem) is considered. The mean crossing/escape time of the particle and the crossing/escape time probability density as a function of time are obtained. The method of numerical integration of the overdamped Langevin equation is used for two types of potential profiles and for the whole admitted region of Levy indices of the external force.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [41] Levy flights in neutral fitness landscapes
    Tomassini, Marco
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 448 : 163 - 171
  • [42] Signatures of Levy flights with annealed disorder
    Baudouin, Q.
    Pierrat, R.
    Eloy, A.
    Nunes-Pereira, E. J.
    Cuniasse, P. -A.
    Mercadier, N.
    Kaiser, R.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [43] Levy flights for light in ordered lasers
    Rocha, Erick G.
    Santos, Emanuel P.
    dos Santos, Bruno J.
    de Albuquerque, Samuel S.
    Pincheira, Pablo I. R.
    Argolo, Carlos
    Moura, Andre L.
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [44] Levy flights: Chaotic, turbulent, and relativistic
    Shlesinger, MF
    Klafter, J
    Zumofen, G
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 491 - 497
  • [45] Generalization of the Khinchin Theorem to Levy Flights
    Weron, Aleksander
    Magdziarz, Marcin
    PHYSICAL REVIEW LETTERS, 2010, 105 (26)
  • [46] Asymmetric Levy flights in nonhomogeneous environments
    Srokowski, Tomasz
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [47] Diffusion regimes in Levy flights with trapping
    Vazquez, A
    Sotolongo-Costa, O
    Brouers, F
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 264 (3-4) : 424 - 431
  • [48] Inertial Levy flights in bounded domains
    Capala, Karol
    Dybiec, Bartlomiej
    CHAOS, 2021, 31 (08)
  • [49] Reaction, Levy flights, and quenched disorder
    Chen, LG
    Deem, MW
    PHYSICAL REVIEW E, 2002, 65 (01) : 1 - 011109
  • [50] Breaking microscopic reversibility with Levy flights
    Kusmierz, Lukasz
    Chechkin, Aleksey
    Gudowska-Nowak, Ewa
    Bier, Martin
    EPL, 2016, 114 (06)