We study holomorphic families of compact Riemann surfaces over the punctured unit disk. For every genus p greater-than-or-equal-to 3 we define a family whose relative canonical bundle has no roots of order n > 2. The monodromy group of that family is generated by a product of powers of commuting Dehn twists. We give necessary and sufficient conditions for such a product to generate the monodromy group of a family over the punctured disk.
机构:
Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USAJohns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA
Bah, Ibrahima
Bonetti, Federico
论文数: 0引用数: 0
h-index: 0
机构:
Johns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USAJohns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA
Bonetti, Federico
论文数: 引用数:
h-index:
机构:
Minasian, Ruben
Nardoni, Emily
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Phys & Astron, Mani L Bhaumik Inst Theoret Phys, Los Angeles, CA 90095 USAJohns Hopkins Univ, Dept Phys & Astron, 3400 North Charles St, Baltimore, MD 21218 USA