FAMILIES OF RIEMANN SURFACES OVER THE PUNCTURED DISK

被引:15
|
作者
EARLE, CJ [1 ]
SIPE, PL [1 ]
机构
[1] SMITH COLL,NORTHAMPTON,MA 01063
关键词
D O I
10.2140/pjm.1991.150.79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study holomorphic families of compact Riemann surfaces over the punctured unit disk. For every genus p greater-than-or-equal-to 3 we define a family whose relative canonical bundle has no roots of order n > 2. The monodromy group of that family is generated by a product of powers of commuting Dehn twists. We give necessary and sufficient conditions for such a product to generate the monodromy group of a family over the punctured disk.
引用
收藏
页码:79 / 96
页数:18
相关论文
共 50 条
  • [1] A Local Families Index Formula for (partial derivative)over-bar-Operators on Punctured Riemann Surfaces
    Albin, Pierre
    Rochon, Frederic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (02) : 483 - 527
  • [2] Bergman kernels on punctured Riemann surfaces
    Auvray, Hugues
    Ma, Xiaonan
    Marinescu, George
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (10) : 1018 - 1022
  • [3] Divisor spaces on punctured Riemann surfaces
    Kallel, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (01) : 135 - 164
  • [4] Bergman kernels on punctured Riemann surfaces
    Auvray, Hugues
    Ma, Xiaonan
    Marinescu, George
    MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 951 - 1002
  • [5] Bergman kernels on punctured Riemann surfaces
    Hugues Auvray
    Xiaonan Ma
    George Marinescu
    Mathematische Annalen, 2021, 379 : 951 - 1002
  • [6] A SYMBOLIC DYNAMICS FOR GEODESICS ON PUNCTURED RIEMANN SURFACES
    LEHNER, J
    SHEINGORN, M
    MATHEMATISCHE ANNALEN, 1984, 268 (04) : 425 - 448
  • [7] Quotient of Bergman kernels on punctured Riemann surfaces
    Hugues Auvray
    Xiaonan Ma
    George Marinescu
    Mathematische Zeitschrift, 2022, 301 : 2339 - 2367
  • [8] Quotient of Bergman kernels on punctured Riemann surfaces
    Auvray, Hugues
    Ma, Xiaonan
    Marinescu, George
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (03) : 2339 - 2367
  • [9] $\Omega$-admissible theory II. Deligne pairings over moduli spaces of punctured Riemann surfacesII. Deligne pairings over moduli spaces of punctured Riemann surfaces
    Lin Weng
    Mathematische Annalen, 2001, 320 : 239 - 283
  • [10] Secondary Fans and Secondary Polyhedra of Punctured Riemann Surfaces
    Joswig, Michael
    Loewe, Robert
    Springborn, Boris
    EXPERIMENTAL MATHEMATICS, 2020, 29 (04) : 426 - 442