The canonical equations of non-holonomous systems

被引:0
|
作者
Poschl, T
机构
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:1829 / 1831
页数:3
相关论文
共 50 条
  • [21] Generalized momenta in constrained non-holonomic systems-Another perspective on the canonical equations of motion
    Barhorst, Alan A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 113 (128-145) : 128 - 145
  • [22] CANONICAL TREATMENT OF NON-CANONICAL GAUGES FOR CONSTRAINED HAMILTONIAN SYSTEMS
    YAFFE, LG
    LETTERE AL NUOVO CIMENTO, 1977, 18 (18): : 561 - 564
  • [23] On nonlinear impulsive differential systems with canonical and non-canonical operators
    Ruggieri, Marianna
    Santra, Shyam Sundar
    Scapellato, Andrea
    APPLICABLE ANALYSIS, 2023, 102 (03) : 852 - 864
  • [24] Canonical decomposition of non-linear systems
    Moog, CH
    Perdon, AM
    Conte, G
    AUTOMATICA, 1997, 33 (08) : 1561 - 1565
  • [25] Canonical form of master equations and characterization of non-Markovianity
    Hall, Michael J. W.
    Cresser, James D.
    Li, Li
    Andersson, Erika
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [26] Mixed variational principle in elasticity theory and canonical systems of equations
    N. P. Semenyuk
    V. M. Trach
    N. B. Zhukova
    International Applied Mechanics, 2007, 43 : 519 - 525
  • [27] Canonical Kane's Equations of Motion for Discrete Dynamical Systems
    Bajodah, Abdulrahman H.
    Hodges, Dewey H.
    AIAA JOURNAL, 2019, 57 (10) : 4226 - 4240
  • [28] Mixed variational principle in elasticity theory and canonical systems of equations
    Semenyuk, N. P.
    Trach, V. M.
    Zhukova, N. B.
    INTERNATIONAL APPLIED MECHANICS, 2007, 43 (05) : 519 - 525
  • [30] General Entropic Approximations for Canonical Systems Described by Kinetic Equations
    Pavan, V.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 142 (04) : 792 - 827