Moving-average representation of autoregressive approximations

被引:31
|
作者
Buhlmann, P
机构
[1] Department of Statistics, University of California, Berkeley, CA 94720, Evans Hall
关键词
AR(infinity); causal; complex analysis; impulse response function; invertible; linear process; MA(infinity); mixing; time series; transfer function; stationary process;
D O I
10.1016/0304-4149(95)00061-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the properties of an MA(infinity)-representation of an autoregressive approximation for a stationary, real-valued process. In doing so we give an extension of Wiener's theorem in the deterministic approximation setup. When dealing with data, we can use this new key result to obtain insight into the structure of MA(infinity)-representations of fitted autoregressive models where the order increases with the sample size. In particular, we give a uniform bound for estimating the moving-average coefficients via autoregressive approximation being uniform over ail integers.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 50 条
  • [41] On moving-average models with feedback
    Li, Dong
    Ling, Shiqing
    Tong, Howell
    [J]. BERNOULLI, 2012, 18 (02) : 735 - 745
  • [42] PREDICTION OF MOVING-AVERAGE PROCESSES
    SHEPP, LA
    SLEPIAN, D
    WYNER, AD
    [J]. BELL SYSTEM TECHNICAL JOURNAL, 1980, 59 (03): : 367 - 415
  • [43] Nonlinear Autoregressive Moving-average (NARMA) Time Series Forecasting Using Neural Networks
    Waheeb, Waddah
    Ghazali, Rozaida
    Shah, Habib
    [J]. 2019 INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCES (ICCIS), 2019, : 508 - 512
  • [44] C.450. Improving a GLS approach for estimation of autoregressive moving-average models
    Choudhury, AH
    Power, S
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1998, 60 (02) : 173 - 176
  • [45] ON PREDICTION OF MOVING-AVERAGE PROCESSES
    SHEPP, LA
    SLEPIAN, D
    WYNER, AD
    [J]. ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 316 - 316
  • [46] ON AN APPROACH TO MOVING-AVERAGE FILTERING
    LYANDRES, V
    BRISKIN, S
    [J]. SIGNAL PROCESSING, 1993, 34 (02) : 163 - 178
  • [47] Simultaneous prediction intervals for autoregressive-integrated moving-average models: A comparative study
    Cheung, SH
    Wu, KH
    Chan, WS
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 28 (03) : 297 - 306
  • [48] Identifying an autoregressive process disturbed by a moving-average noise using inner–outer factorization
    Ahmed Abdou
    Flavius Turcu
    Eric Grivel
    Roberto Diversi
    Guillaume Ferré
    [J]. Signal, Image and Video Processing, 2015, 9 : 235 - 244
  • [49] ITERATIVE IDENTIFICATION OF NON-INVERTIBLE AUTOREGRESSIVE MOVING-AVERAGE SYSTEMS WITH SEISMIC APPLICATIONS
    ROBINSON, EA
    [J]. GEOEXPLORATION, 1978, 16 (1-2): : 1 - 19
  • [50] ESTIMATION OF MOVING-AVERAGE PARAMETERS
    CHOW, JC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (02) : 268 - &