ON A FAMILY OF SET-VALUED FUNCTIONS

被引:0
|
作者
PLEWNIA, J [1 ]
机构
[1] PEDAGOG UNIV,INST MATH,PL-30084 KRAKOW,POLAND
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 1995年 / 46卷 / 1-2期
关键词
SET-VALUED FUNCTIONS; HAUSDORFF METRIC; ITERATION SEMIGROUPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a linear continuous set-valued function defined on a closed convex cone C in a Banach space X. The aim of this paper is to show that for every x is an element of C and t greater than or equal to 0 a series B-t(x) = Sigma(i)(infinity)=(0)t(i)/i!G(i)(x) is convergent in the space of nonempty compact convex subsets of X with the Hausdorff metric. Moreover the inclusion(B-t o B-s)(x) subset of B-t+s(x) for x is an element of C and t, s greater than or equal to 0 holds true.
引用
下载
收藏
页码:149 / 159
页数:11
相关论文
共 50 条