ON THE CORRELATION STRUCTURE OF THE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION

被引:42
|
作者
DIJKERMAN, RW [1 ]
MAZUMDAR, RR [1 ]
机构
[1] UNIV QUEBEC,INRS TELECOMMUN,INST NATL RECH SCI,ILE DES SOEURS H3E 1H6,PQ,CANADA
基金
美国国家科学基金会;
关键词
WAVELET TRANSFORM; FRACTIONAL BROWNIAN MOTION; STOCHASTIC PROCESSES;
D O I
10.1109/18.333875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we show that the interdependence of the discrete wavelet coefficients of fractional Brownian motion, defined by the normalized correlation, decays exponentially fast across scales and hyperbolically fast along time.
引用
收藏
页码:1609 / 1612
页数:4
相关论文
共 50 条
  • [31] BROWNIAN-MOTION AND CORRELATION-FUNCTIONS IN A VISCOELASTIC FLUID
    RODRIGUEZ, RF
    SALINASRODRIGUEZ, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09): : 2121 - 2130
  • [32] Wavelet estimation for operator fractional Brownian motion
    Abry, Patrice
    Didier, Gustavo
    BERNOULLI, 2018, 24 (02) : 895 - 928
  • [33] WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL BROWNIAN MOTION
    Coeurjolly, Jean-Francois
    Amblard, Pierre-Olivier
    Achard, Sophie
    ESAIM-PROBABILITY AND STATISTICS, 2013, 17 : 592 - 604
  • [34] HAUSDORFF DIMENSION AND MULTIPLE POINTS OF FRACTIONAL BROWNIAN-MOTION IN RN
    WEBER, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1983, 297 (06): : 357 - 360
  • [35] STOCHASTIC DIFFERENTIAL-EQUATIONS WITH FRACTIONAL BROWNIAN-MOTION INPUT
    JUMARIE, G
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1993, 24 (06) : 1113 - 1131
  • [36] A DIFFUSION-LIMITED AGGREGATION MODEL WITH A FRACTIONAL BROWNIAN-MOTION
    NAKAGAWA, M
    KOBAYASHI, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (10) : 3386 - 3391
  • [37] Stochastic shell models driven by a multiplicative fractional Brownian-motion
    Bessaih, Hakima
    Garrido-Atienza, Maria J.
    Schmalfuss, Bjorn
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 320 : 38 - 56
  • [38] PRACTICAL APPLICATION OF FRACTIONAL BROWNIAN-MOTION AND NOISE TO SYNTHETIC HYDROLOGY
    CHI, M
    NEAL, E
    YOUNG, GK
    WATER RESOURCES RESEARCH, 1973, 9 (06) : 1523 - 1533
  • [39] REARRANGEMENTS OF BROWNIAN-MOTION
    KAUFMAN, R
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 31 (01): : 71 - 73
  • [40] QUANTUM BROWNIAN-MOTION
    OPPENHEIM, I
    ROMEROROCHIN, V
    PHYSICA A, 1987, 147 (1-2): : 184 - 202