CATASTROPHIC INTERFERENCE AND GENERALIZATION IN NEURAL NETWORKS

被引:0
|
作者
LEWANDOWSKY, S [1 ]
机构
[1] UNIV OKLAHOMA,DEPT PSYCHOL,NORMAN,OK 73019
关键词
D O I
暂无
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
引用
收藏
页码:653 / 653
页数:1
相关论文
共 50 条
  • [31] GENERALIZATION IN 2-LAYER NEURAL NETWORKS
    KANG, K
    OH, JH
    KWON, C
    PARK, Y
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1993, 26 : S396 - S398
  • [32] GENERALIZATION IN HIGHER-ORDER NEURAL NETWORKS
    YOUNG, S
    DOWNS, T
    ELECTRONICS LETTERS, 1993, 29 (16) : 1491 - 1493
  • [33] On Generalization Bounds of a Family of Recurrent Neural Networks
    Chen, Minshuo
    Li, Xingguo
    Zhao, Tuo
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 1233 - 1242
  • [34] Generalization capabilities of translationally equivariant neural networks
    Bulusu, Srinath
    Favoni, Matteo
    Ipp, Andreas
    Mueller, David, I
    Schuh, Daniel
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [35] Generalization and selection of examples in feedforward neural networks
    Franco, L
    Cannas, SA
    NEURAL COMPUTATION, 2000, 12 (10) : 2405 - 2426
  • [36] Ecological Neural Networks for Object Recognition and Generalization
    Raffaele Calabretta
    Andrea Di Ferdinando
    Domenico Parisi
    Neural Processing Letters, 2004, 19 : 37 - 48
  • [37] MixStyle Neural Networks for Domain Generalization and Adaptation
    Zhou, Kaiyang
    Yang, Yongxin
    Qiao, Yu
    Xiang, Tao
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (03) : 822 - 836
  • [38] Ecological neural networks for object recognition and generalization
    Calabretta, R
    Di Ferdinando, A
    Parisi, D
    NEURAL PROCESSING LETTERS, 2004, 19 (01) : 37 - 48
  • [39] FEEDBACK NEURAL NETWORKS - NEW CHARACTERISTICS AND A GENERALIZATION
    KAK, SC
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1993, 12 (02) : 263 - 278
  • [40] A Generalization of Recurrent Neural Networks for Graph Embedding
    Han, Xiao
    Zhang, Chunhong
    Guo, Chenchen
    Ji, Yang
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT II, 2018, 10938 : 247 - 259