Methodological Basis for Studying Neural Networks

被引:0
|
作者
Vinogradova, Yekaterina Yu [1 ,2 ]
机构
[1] Urals State Univ Econ, Stat Econometr & Informat Dept, 8 Marta,Narodnoy Voli St 62-45, Ekaterinburg 620144, Russia
[2] Urals State Univ Econ, Automat Dept, Ekaterinburg 620144, Russia
来源
UPRAVLENETS-THE MANAGER | 2014年 / 02期
关键词
INTELLIGENT INFORMATION TECHNOLOGIES; INFORMATION SYSTEMS; ADMINISTRATION OF ENTERPRISES;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The article describes the methodological basis for the creation of an intelligent information system designed to provide support for entities' administration in decision-making process. The author systematizes modern scientific understanding of intelligent information technologies in terms of the field of their application.
引用
下载
收藏
页码:39 / 43
页数:5
相关论文
共 50 条
  • [41] A survey on hyper basis function neural networks
    Zhou Y.
    Mu T.
    Pang Z.-H.
    Zheng C.
    Systems Science and Control Engineering, 2019, 7 (01): : 495 - 507
  • [42] Interpreting the Basis Path Set in Neural Networks
    Zhu Juanping
    Meng Qi
    Chen Wei
    Ma Zhiming
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2021, 34 (06) : 2155 - 2167
  • [43] Methodological Advances in Artificial Neural Networks for Time Series Forecasting
    Cogollo, M. R.
    Velasquez, J. D.
    IEEE LATIN AMERICA TRANSACTIONS, 2014, 12 (04) : 764 - 771
  • [44] Comparison between Traditional Neural Networks and Radial Basis Function Networks
    Xie, Tiantian
    Yu, Hao
    Wilamowski, Bogdan
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [45] Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
    Neruda, Roman
    Vidnerova, Petra
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2009, 2 (01): : 49 - 57
  • [46] Learning errors by radial basis function neural networks and regularization networks
    Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věžíí 2, Prague 8, Czech Republic
    Int. J. Grid Distrib. Comput., 2009, 1 (49-58):
  • [47] Studying the micromechanical behaviors of a polycrystalline metal by artificial neural networks
    Dai, Wei
    Wang, Huamiao
    Guan, Qiang
    Li, Dayong
    Peng, Yinghong
    Tome, Carlos N.
    ACTA MATERIALIA, 2021, 214
  • [48] A simple mechanical system for studying adaptive oscillatory neural networks
    Jouffroy, Guillaume
    Jouffroy, Jerome
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2584 - +
  • [49] Studying the performance of artificial neural networks on problems related to cryptography
    Laskari, E. C.
    Meletiou, G. C.
    Tasoulis, D. K.
    Vrahatis, M. N.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 937 - 942
  • [50] SUPER RESOLUTION USING RADIAL BASIS NEURAL NETWORKS
    Catalbas, Mehmet Cem
    Ozturk, Serkan
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,