AN UPPER BOUND FOR THE RAMSEY NUMBERS R(K-3,G)

被引:3
|
作者
GODDARD, W [1 ]
KLEITMAN, DJ [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0012-365X(94)90158-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number r(H,G) is defined as the minimum N such that for any coloring of the edges of the N-vertex complete graph K-N in red and blue, it must contain either a led H or a blue G. In this paper we show that for any graph G without isolated vertices, r(K-3,G)less than or equal to 2q+1 where G has q edges. In other words, any graph on 2q+1 vertices with independence number at most 2 contains every (isolate-free) graph on q edges. This establishes a 1980 conjecture of Harary. The result is best possible as a function of q.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [21] A bound for multicolor Ramsey numbers
    Shi, LS
    Zhang, KM
    [J]. DISCRETE MATHEMATICS, 2001, 226 (1-3) : 419 - 421
  • [22] Upper bounds for Ramsey numbers
    Shi, LS
    [J]. DISCRETE MATHEMATICS, 2003, 270 (1-3) : 251 - 265
  • [23] On Ramsey Numbers R(K4 - e,Kt)
    Jiang, Yu
    Liang, Meilian
    Sun, Yongqi
    Xu, Xiaodong
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (03) : 651 - 661
  • [24] The Ramsey Number R(3, K10 - e) and Computational Bounds for R(3, G)
    Goedgebeur, Jan
    Radziszowski, Stanislaw P.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (04):
  • [25] A lower bound for irredundant Ramsey numbers
    Krivelevich, M
    [J]. DISCRETE MATHEMATICS, 1998, 183 (1-3) : 185 - 192
  • [26] A subexponential upper bound for van der Waerden numbers W(3, k)
    Schoen, Tomasz
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [27] ON THE RAMSEY NUMBERS R(3,8) AND R(3,9)
    GRINSTEAD, CM
    ROBERTS, SM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1982, 33 (01) : 27 - 51
  • [28] Ramsey numbers of K3 and Kn,n
    Lin, Qizhong
    Li, Yusheng
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 380 - 384
  • [29] On upper domination Ramsey numbers for graphs
    Henning, MA
    Oellermann, OR
    [J]. DISCRETE MATHEMATICS, 2004, 274 (1-3) : 125 - 135
  • [30] New upper bounds for Ramsey numbers
    Ru, HY
    Min, ZK
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (03) : 391 - 394