Application of passive source surface-wave method in site engineering seismic survey

被引:0
|
作者
Wang, Chaofan [1 ,2 ]
Zhang, Jian [1 ,2 ]
Yan, Lihui [3 ]
Liu, Hui [3 ]
Zhao, Dong [4 ]
机构
[1] Chinese Acad Sci, Key Lab Computat Geodynam, Beijing 100049, Peoples R China
[2] Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R China
[3] Geol Engn Co Ltd, North China Inst, Beijing 100085, Peoples R China
[4] Geogiga Technol Corp, Calgary, AB T3A5P2, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Passive source surface-wave method; Shearwave velocity; Dispersion curve; Seismic effect; Engineering seismic survey;
D O I
10.1007/s11589-014-0065-0
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m underground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes, shorten survey period, and reduce engineering cost to some extent.
引用
收藏
页码:101 / 115
页数:15
相关论文
共 50 条
  • [21] Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source
    Xu, Yixian
    Xia, Jianghai
    Miller, Richard D.
    JOURNAL OF APPLIED GEOPHYSICS, 2006, 59 (02) : 117 - 125
  • [22] Using Seismic Source Parameters to Model Frequency-Dependent Surface-Wave Radiation Patterns
    Rosler, Boris
    van der Lee, Suzan
    SEISMOLOGICAL RESEARCH LETTERS, 2020, 91 (02) : 992 - 1002
  • [23] QUADRIPARTITE SURFACE-WAVE METHOD - DEVELOPMENT
    SCHWAB, F
    KAUSEL, E
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1976, 45 (02): : 231 - 244
  • [24] Surface-Wave Simulation for the Continuously Moving Seismic Sources
    Yan, Yuefeng
    Sun, Chengyu
    Lin, Tengfei
    Wang, Jiao
    Yang, Jidong
    Wu, Dunshi
    SEISMOLOGICAL RESEARCH LETTERS, 2021, 92 (04) : 2429 - 2440
  • [25] A surface-wave seismic metamaterial filled with auxetic foam
    Luo, Yu Ming
    He, Cang
    Tao, Zhi
    Hao, Jian
    Xu, Hang Hang
    Zhang, Yi
    Zhang, Fang
    Ren, Xin
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 262
  • [26] LOCAL MAGNITUDE, SURFACE-WAVE MAGNITUDE AND SEISMIC ENERGY
    TOBYAS, V
    MITTAG, R
    STUDIA GEOPHYSICA ET GEODAETICA, 1991, 35 (04) : 354 - 362
  • [27] A METHOD OF DISCRIMINATING THE SURFACE-WAVE VISIBILITY
    YU, GA
    XUE, BY
    KEXUE TONGBAO, 1988, 33 (23): : 1933 - 1936
  • [28] CALCULATION METHOD OF SURFACE-WAVE MAGNETRONS
    LEVIN, GY
    RADIOTEKHNIKA I ELEKTRONIKA, 1975, 20 (08): : 1679 - 1685
  • [29] Enhancing Reflecting Intelligence Surface using Surface-wave Engineering
    Arshed, Talha
    Maci, Stefano
    Martini, Enrica
    2024 IEEE INC-USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2024, : 138 - 138
  • [30] Interpreting Surface-wave Data for a Site with Shallow Bedrock
    Casto, Daniel W.
    Luke, Barbara
    Calderon-Macias, Carlos
    Kaufmann, Ronald
    JOURNAL OF ENVIRONMENTAL AND ENGINEERING GEOPHYSICS, 2009, 14 (03) : 115 - 127