MATHEMATICAL MODEL OF THE DENSITY DISTRIBUTION OF MOSCOWS POPULATION

被引:1
|
作者
ROMASHKIN, VI [1 ]
机构
[1] MOSCOW STATE UNIV,MOSCOW,USSR
来源
SOVIET GEOGRAPHY REVIEW AND TRANSLATION | 1967年 / 8卷 / 09期
关键词
D O I
10.1080/00385417.1967.10770939
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
引用
收藏
页码:730 / 736
页数:7
相关论文
共 50 条
  • [21] A Mathematical Model to Determine the Temperature Distribution of a Distribution Transformer
    Wanninayaka, Lakmini
    Edirisinghe, Chrishmal
    Fernando, Supun
    Lucas, J. R.
    2019 MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON) / 5TH INTERNATIONAL MULTIDISCIPLINARY ENGINEERING RESEARCH CONFERENCE, 2019, : 462 - 467
  • [22] A mathematical model for the distribution of fluorodeoxyglucose in humans
    Hays, MT
    Segall, GM
    JOURNAL OF NUCLEAR MEDICINE, 1999, 40 (08) : 1358 - 1366
  • [23] A MATHEMATICAL DISTRIBUTION MODEL OF TECTONIC DISTURBANCES
    BAUER, H
    STOYAN, D
    ZEITSCHRIFT FUR ANGEWANDTE GEOLOGIE, 1980, 26 (06): : 316 - 319
  • [24] A MATHEMATICAL FORMULATION TO DESCRIBE DENSITY OF PARTICLES IN AN INHHOMOGENEOUS DISTRIBUTION
    Chan, Ken
    ASTRODYNAMICS 2013, PTS I-III, 2014, 150 : 2179 - 2198
  • [25] Mathematical modeling on the base of functions density of normal distribution
    Pinkovetskaia, Iuliia
    Nuretdinova, Yulia
    Nuretdinov, Ildar
    Lipatova, Natalia
    REVISTA DE LA UNIVERSIDAD DEL ZULIA, 2021, 12 (33): : 34 - 49
  • [26] Mathematical models of population distribution within a culture group
    Freedman, HI
    Singh, M
    Easton, AK
    Baggs, I
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 29 (01) : 57 - 67
  • [27] EMPIRICAL MATHEMATICAL RULES CONCERNING THE DISTRIBUTION AND EQUILIBRIUM OF POPULATION
    Stewart, John Q.
    GEOGRAPHICAL REVIEW, 1947, 37 (03) : 461 - 485
  • [28] A mathematical model for nanoparticle melting with density change
    Font, F.
    Myers, T. G.
    Mitchell, S. L.
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (02) : 233 - 243
  • [29] A mathematical model for nanoparticle melting with density change
    F. Font
    T. G. Myers
    S. L. Mitchell
    Microfluidics and Nanofluidics, 2015, 18 : 233 - 243
  • [30] A stochastic SEIRS rabies model with population dispersal: Stationary distribution and probability density function
    Shi, Zhenfeng
    Jiang, Daqing
    Zhang, Xinhong
    Alsaedi, Ahmed
    Applied Mathematics and Computation, 2022, 427