EQUIVALENCE PROPERTIES OF THE HAUSMAN STATISTIC BASED ON A GENERALIZED INVERSE

被引:3
|
作者
THURSBY, JG [1 ]
DEZHBAKHSH, H [1 ]
机构
[1] UNIV AKRON, AKRON, OH 44325 USA
关键词
D O I
10.1016/0165-1765(90)90160-3
中图分类号
F [经济];
学科分类号
02 ;
摘要
The Hausman statistic based on a generalized inverse is numerically equivalent to statistics that are based on a subset of the parameters and do not require the use of a generalized inverse. In a general non-linear setting there exists at least one such statistic. In the case of the linear model a number of such statistics are obtained by arbitrarily selecting parameter subsets. © 1990.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 50 条
  • [41] A generalized equivalence principle
    Lyre, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2000, 9 (06): : 633 - 647
  • [42] Generalized stuttering equivalence
    Jha, S
    Peled, D
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-V, PROCEEDINGS, 1999, : 1054 - 1060
  • [43] GENERALIZED EQUIVALENCE RULES
    PROKHOROV, LV
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1982, (01): : 106 - 108
  • [44] GENERALIZED PRINCIPLE OF EQUIVALENCE
    THYSSENB.S
    GRAYSON, HW
    PURE AND APPLIED GEOPHYSICS, 1973, 110 (09) : 1911 - 1917
  • [45] MORITA EQUIVALENCE AND THE GENERALIZED
    Bischoff, Francis
    Gualtieri, Marco
    Zabzine, Maxim
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 121 (02) : 187 - 226
  • [47] Inference for generalized inverse Lindley distribution based on generalized order statistics
    Devendra Kumar
    Mazen Nassar
    Sanku Dey
    Afrika Matematika, 2020, 31 : 1207 - 1235
  • [48] Inference for generalized inverse Lindley distribution based on generalized order statistics
    Kumar, Devendra
    Nassar, Mazen
    Dey, Sanku
    AFRIKA MATEMATIKA, 2020, 31 (7-8) : 1207 - 1235
  • [49] Morita equivalence of inverse semigroups
    B. Afara
    M. V. Lawson
    Periodica Mathematica Hungarica, 2013, 66 : 119 - 130
  • [50] INVERSE MORPHIC EQUIVALENCE ON LANGUAGES
    KARHUMAKI, J
    WOOD, D
    INFORMATION PROCESSING LETTERS, 1984, 19 (05) : 213 - 218