ON CHLODOWSKY VARIANT OF (p, q) KANTOROVICH-STANCU-SCHURER OPERATORS

被引:0
|
作者
Mishra, Vishnu Narayan [1 ,2 ]
Pandey, Shikha [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Appl Math & Humanities, Ichchhanath Mahadev Dumas Rd, Surat 395007, Gujarat, India
[2] L 1627 Awadh Puri Colony Beniganj,Phase 3, Faizabad 224001, Uttar Pradesh, India
来源
关键词
(p; q)-integers; q) Bernstein operators; Chlodowsky polynomials; q) Bernstein-Kantorovich operators; modulus of continuity; linear positive operator; Korovkin type approximation theorem; rate of convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Chlodowsky variant of (p, q) Kantorovich-Stancu-Schurer operators on the unbounded domain which is a generalization of (p, q) Bernstein-Stancu-Kantorovich operators. We have also derived its Korovkin type approximation properties and rate of convergence.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [31] The Stancu-Chlodowsky Operators based on q-Calculus
    Tas, Emre
    Orhan, Cihan
    Yurdakadim, Tugba
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1152 - 1155
  • [32] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    P. N. Agrawal
    Zoltán Finta
    A. Sathish Kumar
    Results in Mathematics, 2015, 67 : 365 - 380
  • [33] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [34] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [35] Bivariate q-Bernstein-Schurer-Kantorovich Operators
    Agrawal, P. N.
    Finta, Zoltan
    Kumar, A. Sathish
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 365 - 380
  • [36] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [37] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [38] Kantorovich type q-Bernstein-Stancu operators
    Erencin, Aysegul
    Bascanbaz-Tunca, Gulen
    Tasdelen, Fatma
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2012, 57 (01): : 89 - 105
  • [39] On the Convergence of Bernstein-Kantorovich-Stancu Shifted Knots Operators involving Schurer Parameter
    Alotaibi, Abdullah
    Nasiruzzaman, Md.
    Mohiuddine, S. A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (01)
  • [40] Approximation of Schurer type q-Bernstein-Kantorovich operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12