ON CHLODOWSKY VARIANT OF (p, q) KANTOROVICH-STANCU-SCHURER OPERATORS

被引:0
|
作者
Mishra, Vishnu Narayan [1 ,2 ]
Pandey, Shikha [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Appl Math & Humanities, Ichchhanath Mahadev Dumas Rd, Surat 395007, Gujarat, India
[2] L 1627 Awadh Puri Colony Beniganj,Phase 3, Faizabad 224001, Uttar Pradesh, India
来源
关键词
(p; q)-integers; q) Bernstein operators; Chlodowsky polynomials; q) Bernstein-Kantorovich operators; modulus of continuity; linear positive operator; Korovkin type approximation theorem; rate of convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Chlodowsky variant of (p, q) Kantorovich-Stancu-Schurer operators on the unbounded domain which is a generalization of (p, q) Bernstein-Stancu-Kantorovich operators. We have also derived its Korovkin type approximation properties and rate of convergence.
引用
收藏
页码:28 / 39
页数:12
相关论文
共 50 条
  • [1] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2014
  • [2] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [3] Approximation properties of Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators
    Mishra, Vishnu Narayan
    Mursaleen, M.
    Pandey, Shikha
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [4] Bivariate Chlodowsky-Stancu Variant of (p,q)-Bernstein-Schurer Operators
    Vedi-Dilek, Tuba
    Gemikonakli, Eser
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [5] TWO-DIMENSIONAL CHLODOWSKY VARIANT OF q-BERNSTEIN-SCHURER-STANCU OPERATORS
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (03) : 446 - 461
  • [6] Approximation by Stancu Variant of ?-Schurer-Kantorovich Operators
    Nasiruzzaman, Md.
    Rao, Nadeem
    Alotaibi, Abdullah
    Mohiuddine, S. A.
    FILOMAT, 2022, 36 (17) : 5751 - 5764
  • [7] On (p, q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 276 : 12 - 20
  • [8] Approximation Properties Of (p, q)-Variant Of Stancu-Schurer Operators
    Wafi, Abdul
    Rao, Nadeem
    Deepmala
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2019, 37 (04): : 137 - 151
  • [9] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2015
  • [10] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,