ON SUPERLINEAR CONVERGENCE IN UNIVARIATE NONSMOOTH MINIMIZATION

被引:1
|
作者
MIFFLIN, R
机构
[1] Department of Pure and Applied Mathematics, Washington State University, Pullman, 99164-2930, WA
关键词
UNIVARIATE OPTIMIZATION; SUPERLINEAR CONVERGENCE; BETTER THAN LINEAR CONVERGENCE; POLYHEDRAL QUADRATIC APPROXIMATION METHODS; SAFEGUARDED BRACKETING METHODS;
D O I
10.1007/BF01588792
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This note demonstrates a new result on superlinear convergence in nonsmooth univariate minimization. It also gives other concepts of rapid convergence for minimization of functions that may have discontinuous derivatives.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 50 条
  • [31] Superlinear convergence of the affine scaling algorithm
    Tsuchiya, T.
    Monteiro, R.D.C.
    Mathematical Programming, Series A, 1996, 75 (01):
  • [32] On the Superlinear Convergence of the Successive Approximations Method
    E. Cătinaş
    Journal of Optimization Theory and Applications, 2002, 113 : 473 - 485
  • [33] A stabilized SQP method: superlinear convergence
    Philip E. Gill
    Vyacheslav Kungurtsev
    Daniel P. Robinson
    Mathematical Programming, 2017, 163 : 369 - 410
  • [34] AN ALGORITHM FOR NONSMOOTH CONVEX MINIMIZATION WITH ERRORS
    KIWIEL, KC
    MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 173 - 180
  • [35] Smoothing methods for nonsmooth, nonconvex minimization
    Chen, Xiaojun
    MATHEMATICAL PROGRAMMING, 2012, 134 (01) : 71 - 99
  • [36] HARNESSING STRUCTURE IN COMPOSITE NONSMOOTH MINIMIZATION
    Bareilles, Gilles
    Iutzeler, Franck
    Malick, Jerome
    SIAM JOURNAL ON OPTIMIZATION, 2023, 33 (03) : 2222 - 2247
  • [37] BARRIER SMOOTHING FOR NONSMOOTH CONVEX MINIMIZATION
    Tran-Dinh, Quoc
    Li, Yen-Huan
    Cevher, Volkan
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [38] On the superlinear convergence of the successive approximations method
    Catinas, E
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 113 (03) : 473 - 485
  • [39] Superlinear convergence of the affine scaling algorithm
    Tsuchiya, T
    Monteiro, RDC
    MATHEMATICAL PROGRAMMING, 1996, 75 (01) : 77 - 110
  • [40] A stabilized SQP method: superlinear convergence
    Gill, Philip E.
    Kungurtsev, Vyacheslav
    Robinson, Daniel P.
    MATHEMATICAL PROGRAMMING, 2017, 163 (1-2) : 369 - 410