Remote-sensing data reveals the response of soil erosion intensity to land use change in Loess Plateau, China

被引:2
|
作者
Xie, JiaLi [1 ]
Yan, ChangZhen [1 ]
Lu, ZhiXiang [2 ]
Li, Sen [1 ]
机构
[1] Chinese Acad Sci, Key Lab Desert & Desertificat, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Gansu, Peoples R China
[2] Chinese Acad Sci, Key Lab Ecohydrol Inland River Basin, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Gansu, Peoples R China
来源
SCIENCES IN COLD AND ARID REGIONS | 2016年 / 8卷 / 04期
关键词
remote sensing; soil erosion intensity; land use; Loess Plateau;
D O I
10.3724/SP.J.1226.2016.00325
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Developing an effective approach to rapidly assess the effects of restoration projects on soil erosion intensity and their extensive spatial and temporal dynamics is important for regional ecosystem management and the development of soil conservation strategies in the future. This study applied a model that was developed at the pixel scale using water soil erosion indicators (land use, vegetation coverage and slope) to assess the soil erosion intensity in the Loess Plateau, China. Landsat TM/ETM+ images in 2000, 2005 and 2010 were used to produce land use maps based on the object-oriented classification method. The MODIS product MOD13Q1 was adopted to derive the vegetation coverage maps. The slope gradient maps were calculated based on data from the digital elevation model. The area of water soil-eroded land was classified into six grades by integrating slope gradients, land use and vegetation coverage. Results show that the Grain-To-Green Project in the Loess Plateau worked based on the land use changes from 2000 to 2010 and enhanced vegetation restoration and ecological conservation. These projects effectively prevented soil erosion. During this period, lands with moderate, severe, more severe and extremely severe soil erosion intensities significantly decreased and changed into less severe levels, respectively. Lands with slight and light soil erosion intensities increased. However, the total soil-eroded area in the Loess Plateau was reduced. The contributions of the seven provinces to the total soil-eroded area in the Loess Plateau and the composition of the soil erosion intensity level in each province are different. Lands with severe, more severe and extremely severe soil erosion intensities are mainly distributed in Qinghai, Ningxia, Gansu and Inner Mongolia. These areas, although relatively small, must be prioritised and preferentially treated.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 50 条
  • [31] The response of soil respiration to land-use change depends on soil microbial community being regulated by edaphic factors in the Loess Plateau, China
    Zhang, Lei
    Wang, Qiang
    Lv, Junping
    Zhang, Chao
    [J]. LAND DEGRADATION & DEVELOPMENT, 2023, 34 (15) : 4781 - 4792
  • [32] Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China
    LongShan Zhao
    XinLan Liang
    FaQi Wu
    [J]. Journal of Arid Land, 2014, 6 : 400 - 409
  • [33] Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China
    Yu, Keke
    Xu, Hai
    Lan, Jianghu
    Sheng, Enguo
    Liu, Bin
    Wu, Huixian
    Tan, Liangcheng
    Yeager, Kevin M.
    [J]. EARTH SURFACE PROCESSES AND LANDFORMS, 2017, 42 (08) : 1238 - 1247
  • [34] Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China
    LongShan ZHAO
    XinLan LIANG
    FaQi WU
    [J]. Journal of Arid Land, 2014, 6 (04) : 400 - 409
  • [35] Soil surface roughness change and its effect on runoff and erosion on the Loess Plateau of China
    Zhao, LongShan
    Liang, XinLan
    Wu, FaQi
    [J]. JOURNAL OF ARID LAND, 2014, 6 (04) : 400 - 409
  • [36] Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China
    Yang, Lei
    Wei, Wei
    Chen, Liding
    Mo, Baoru
    [J]. JOURNAL OF HYDROLOGY, 2012, 475 : 111 - 122
  • [37] The magnitude of soil erosion on hillslopes with different land use patterns under an extreme rainstorm on the Northern Loess Plateau, China
    Tang, Bingzhe
    Jiao, Juying
    Zhang, Yifeng
    Chen, Yixian
    Wang, Nan
    Bai, Leichao
    [J]. SOIL & TILLAGE RESEARCH, 2020, 204
  • [38] Effects of the Gully Land Consolidation Project on soil erosion and sediment yield on the Loess Plateau, China
    Wu, Ge
    Fu, Suhua
    Zhou, Guiyun
    Yin, Bing
    [J]. LAND DEGRADATION & DEVELOPMENT, 2023, 34 (05) : 1464 - 1476
  • [39] Soil organic carbon as a function of land use and topography on the Loess Plateau of China
    Sun, Wenyi
    Zhu, Hanhua
    Guo, Shengli
    [J]. ECOLOGICAL ENGINEERING, 2015, 83 : 249 - 257
  • [40] Impacts of land use, rainfall, and temperature on soil conservation in the Loess Plateau of China
    Chen, Jingshu
    Chen, Yiping
    Wang, Kaibo
    Zhang, Huiwen
    Tian, Hanwen
    Cao, Jing
    [J]. CATENA, 2024, 239