INTERPOLATION, REALIZATION, AND RECONSTRUCTION OF NOISY, IRREGULARLY SAMPLED DATA

被引:200
|
作者
RYBICKI, GB
PRESS, WH
机构
[1] Harvard-Smithsonian Ctr. Astrophys., Cambridge
来源
ASTROPHYSICAL JOURNAL | 1992年 / 398卷 / 01期
关键词
METHODS; ANALYTICAL; DATA ANALYSIS; NUMERICAL;
D O I
10.1086/171845
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Various statistical procedures related to linear prediction and optimal filtering are developed for general, irregularly sampled, data sets. The data set may be a function of time, a spatial sample, or an unordered set. In the case of time series, the underlying process may be low-frequency divergent (weakly nonstationary). Explicit formulas are given for (i) maximum likelihood reconstruction (interpolation) with estimation of uncertainties, (ii) reconstruction by unbiased estimators (Gauss-Markov), (iii) unconstrained Monte Carlo realization of the underlying process, (iv) Monte Carlo realizations constrained by measured data, and (v) simultaneous reconstruction and determination of unknown linear parameters.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [21] Regularized Reconstruction of Irregularly Sampled Scalar Light Fields
    Uzunov, Vladislav
    Gotchev, Atanas
    Egiazarian, Karen
    2010 9TH EURO-AMERICAN WORKSHOP ON INFORMATION OPTICS, 2010,
  • [22] Autoregressive order selection for irregularly sampled data
    Broersen, Piet M. T.
    2006 IEEE Instrumentation and Measurement Technology Conference Proceedings, Vols 1-5, 2006, : 1004 - 1009
  • [23] Recurrence plot analysis of irregularly sampled data
    Ozken, Ibrahim
    Eroglu, Deniz
    Breitenbach, Sebastian F. M.
    Marwan, Norbert
    Tan, Liangcheng
    Tirnakli, Ugur
    Kurths, Juergen
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [24] Regularization of incompletely, irregularly and randomly sampled data
    Sastry, C. S.
    SIXTH INDIAN CONFERENCE ON COMPUTER VISION, GRAPHICS & IMAGE PROCESSING ICVGIP 2008, 2008, : 158 - 162
  • [25] Resolution optimization with irregularly sampled Fourier data
    Ferrara, Matthew
    Parker, Jason T.
    Cheney, Margaret
    INVERSE PROBLEMS, 2013, 29 (05)
  • [26] Constrained clustering of irregularly sampled spatial data
    Pawitan, Y
    Huang, J
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (12) : 853 - 865
  • [27] Uncovering delayed patterns in noisy and irregularly sampled time series: An astronomy application
    Cuevas-Tello, Juan C.
    Tino, Peter
    Raychaudhury, Somak
    Yao, Xin
    Harva, Markus
    PATTERN RECOGNITION, 2010, 43 (03) : 1165 - 1179
  • [28] Temporally Consistent Snow Cover Estimation from Noisy, Irregularly Sampled Measurements
    Rufenacht, Dominic
    Brown, Matthew
    Beutel, Jan
    Susstrunk, Sabine
    PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 2, 2014, : 275 - 283
  • [29] Reconstruction of irregularly-sampled images by regularization in spline spaces
    Vázquez, C
    Dubois, E
    Konrad, J
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 405 - 408
  • [30] Irregularly sampled seismic data interpolation via wavelet-based convolutional block attention deep learning
    Lou, Yihuai
    Wu, Lukun
    Liu, Lin
    Yu, Kai
    Liu, Naihao
    Wang, Zhiguo
    Wang, Wei
    ARTIFICIAL INTELLIGENCE IN GEOSCIENCES, 2022, 3 : 192 - 202