A Unified Local Convergence for Jarratt-type Methods in Banach Space Under Weak Conditions

被引:0
|
作者
Argyros, Ioannis K. [1 ]
George, Santhosh [2 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangalore 757025, India
来源
THAI JOURNAL OF MATHEMATICS | 2015年 / 13卷 / 01期
关键词
Jarratt-type methods; Inexact Newton method; Banach space; Convergence ball; local convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a unified local convergence analysis for Jarratt-type methods in order to approximate a solution of a nonlinear equation in a Banach space setting. Our methods include the Jarratt; Inverse free Jarratt; super-Halley and other high order methods. The convergence ball and error estimates are given for these methods under the same conditions. Numerical examples are also provided in this study.
引用
收藏
页码:165 / 176
页数:12
相关论文
共 50 条
  • [31] Semilocal convergence of a Secant-type method under weak Lipschitz conditions in Banach spaces
    Kumar, Abhimanyu
    Gupta, D. K.
    Martinez, Eulalia
    Singh, Sukhjit
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 330 : 732 - 741
  • [32] Unified Convergence for Multi-Point Super Halley-Type Methods with Parameters in Banach Space
    Argyros, Ioannis K.
    George, Santhosh
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2019, 50 (01): : 1 - 13
  • [33] Unified Convergence for Multi-Point Super Halley-Type Methods with Parameters in Banach Space
    Ioannis K. Argyros
    Santhosh George
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 1 - 13
  • [34] A CONVERGENCE THEOREM FOR SOME NEWTON TYPE METHODS UNDER WEAK SMOOTHNESS CONDITIONS
    Pacurar, Madalina
    Berinde, Vasile
    APLIMAT 2007 - 6TH INTERNATIONAL CONFERENCE, PT II, 2007, : 265 - 270
  • [35] LOCAL CONVERGENCE FOR SOME THIRD-ORDER ITERATIVE METHODS UNDER WEAK CONDITIONS
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 781 - 793
  • [36] On local convergence of a Newton-type method in Banach space
    Argyros, Ioannis K.
    Chen, Jinhai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (08) : 1366 - 1374
  • [37] Ball convergence for combined three-step methods under generalized conditions in Banach space
    Argyros, Ioannis K.
    Behl, Ramandeep
    Gonzalez, Daniel
    Motsa, Sandile S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (01): : 127 - 137
  • [38] Ball Convergence for Combined Three-Step Methods Under Generalized Conditions in Banach Space
    Alharbey, R. A.
    Argyros, Ioannis K.
    Behl, Ramandeep
    SYMMETRY-BASEL, 2019, 11 (08):
  • [39] On the local superlinear convergence of a Newton-type method for LCP under weak conditions
    Fischer, A
    OPTIMIZATION METHODS & SOFTWARE, 1995, 6 (02): : 83 - 107
  • [40] On weak convergence of probability measures in a Banach space
    Baushev A.N.
    Journal of Mathematical Sciences, 2002, 109 (6) : 2037 - 2046