ON THE CAHN-HILLIARD EQUATION

被引:44
|
作者
ELLIOTT, CM
ZHENG, SM
机构
[1] Department of Mathematics, Purdue University, West Lafayette, Indiana, United States
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
SOLID SOLUTIONS
引用
下载
收藏
页码:339 / 357
页数:19
相关论文
共 50 条
  • [21] Dynamics of the viscous Cahn-Hilliard equation
    Carvalho, A. N.
    Dlotko, Tomasz
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (02) : 703 - 725
  • [22] A Note on the Viscous Cahn-Hilliard Equation
    柯媛元
    尹景学
    Communications in Mathematical Research, 2004, (01) : 101 - 108
  • [23] The Cahn-Hilliard Equation with Logarithmic Potentials
    Cherfils, Laurence
    Miranville, Alain
    Zelik, Sergey
    MILAN JOURNAL OF MATHEMATICS, 2011, 79 (02) : 561 - 596
  • [24] The Cahn-Hilliard Equation with Logarithmic Potentials
    Laurence Cherfils
    Alain Miranville
    Sergey Zelik
    Milan Journal of Mathematics, 2011, 79 : 561 - 596
  • [25] Bubbles interactions in the Cahn-Hilliard equation
    Calisto, H
    Clerc, M
    Rojas, R
    Tirapegui, E
    PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3805 - 3808
  • [26] A benchmark for the surface Cahn-Hilliard equation
    Raetz, Andreas
    APPLIED MATHEMATICS LETTERS, 2016, 56 : 65 - 71
  • [27] On the μ-transform:: Applications to the Cahn-Hilliard equation
    Mitlin, Vlad
    PHYSICS LETTERS A, 2006, 358 (02) : 142 - 148
  • [28] Lattice Boltzmann equation method for the Cahn-Hilliard equation
    Zheng, Lin
    Zheng, Song
    Zhai, Qinglan
    PHYSICAL REVIEW E, 2015, 91 (01):
  • [29] A perturbation of the Cahn-Hilliard equation with logarithmic nonlinearity
    Conti, Monica
    Gatti, Stefania
    Miranville, Alain
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 382 : 50 - 76
  • [30] Insensitizing controls for the Cahn-Hilliard type equation
    Gao, Peng
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (35) : 1 - 22