SYMPLECTIC REDUCTION OF A LAGRANGIAN FOLIATION IN A NEIGHBORHOOD OF A COMPACT LEAF

被引:0
|
作者
CURRASBOSCH, C
MOLINO, P
机构
[1] UNIV MONTPELLIER 2,DEPT MATH,GETODIM,CNRS,UA 1407,F-34095 MONTPELLIER,FRANCE
[2] UNIV MONTPELLIER 2,DEPT MATH,CNRS,GDR 144,F-34095 MONTPELLIER,FRANCE
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1994年 / 318卷 / 07期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, OMEGA, L) be a 2 n-symplectic manifold endowed with a Lagrangian foliation, and (L0, del0) a compact leaf with its flat affine Weinstein's connection. One assumes that the holonomy of L0 is linearisable. One shows that if T(k) acts by translations on (L0, del0), then this action extends in a neighborhood of L0 as an hamiltonian action along the leaves. Application is given to the problem of symplectic linearisation of C in a neighborhood of L0.
引用
收藏
页码:661 / 664
页数:4
相关论文
共 50 条