EXPONENTIAL DECAY FOR PRODUCTS OF FOURIER INTEGRAL OPERATORS

被引:0
|
作者
Anantharaman, Nalini [1 ]
机构
[1] Univ Orsay Paris XI, Lab Math, F-91405 Orsay, France
关键词
Semiclassical analysis; Fourier integral operators;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This text contains an alternative presentation, and in certain cases an improvement, of the "hyperbolic dispersive estimate" proved in [1, 3], where it was used to make progress towards the quantum unique ergodicity conjecture. The main statement gives a sufficient condition to have exponential decay of the norms of long products of sub- unitary Fourier integral operators. The improved version presented here is needed in the two papers [5] and [6].
引用
收藏
页码:165 / 181
页数:17
相关论文
共 50 条
  • [41] A Class of Integral Operators that Fix Exponential Functions
    Bardaro, Carlo
    Mantellini, Ilaria
    Uysal, Gumrah
    Yilmaz, Basar
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [42] INTEGRAL-OPERATORS GENERATED BY EXPONENTIAL INTEGRALS
    KAPER, HG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 59 (02) : 216 - 226
  • [43] A Class of Integral Operators that Fix Exponential Functions
    Carlo Bardaro
    Ilaria Mantellini
    Gumrah Uysal
    Basar Yilmaz
    Mediterranean Journal of Mathematics, 2021, 18
  • [44] ROUGH PSEUDODIFFERENTIAL OPERATORS ON HARDY SPACES FOR FOURIER INTEGRAL OPERATORS
    Rozendaal, Jan
    JOURNAL D ANALYSE MATHEMATIQUE, 2023, 149 (01): : 135 - 165
  • [45] Rough pseudodifferential operators on Hardy spaces for Fourier integral operators
    Jan Rozendaal
    Journal d'Analyse Mathématique, 2023, 149 : 135 - 165
  • [46] Representation of Fourier integral operators using shearlets
    Guo, Kanghui
    Labate, Demetrio
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (03) : 327 - 371
  • [47] FOURIER INTEGRAL-OPERATORS WITH FOLD SINGULARITIES
    GREENLEAF, A
    SEEGER, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1994, 455 : 35 - 56
  • [48] ESTIMATES FOR INTEGRAL FOURIER OPERATORS WITH COMPLEX PHASE
    DANILOV, VG
    DZHEMESYUK, IA
    MATHEMATICAL NOTES, 1982, 32 (3-4) : 761 - 771
  • [49] FOURIER INTEGRAL-OPERATORS AND THE CANONICAL OPERATOR
    NAZAIKINSKII, VE
    OSHMYAN, VG
    STERNIN, BY
    SHATALOV, VE
    RUSSIAN MATHEMATICAL SURVEYS, 1981, 36 (02) : 93 - 161
  • [50] LP BOUNDEDNESS OF FOURIER INTEGRAL-OPERATORS
    BEALS, RM
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 38 (264) : R5 - 57