CLASSIFICATION OF RICCI TENSOR

被引:21
|
作者
LUDWIG, G
SCANLAN, G
机构
关键词
D O I
10.1007/BF01646625
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:291 / &
相关论文
共 50 条
  • [31] Comparison Geometry for an Extension of Ricci Tensor
    Azami, Shahroud
    Fatemi, Seyyed Hamed
    Kashani, Seyyed Mohammad Bagher
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [32] The Weyl tensor of gradient Ricci solitons
    Cao, Xiaodong
    Tran, Hung
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 389 - 436
  • [33] Comparison Geometry for an Extension of Ricci Tensor
    Shahroud Azami
    Seyyed Hamed Fatemi
    Seyyed Mohammad Bagher Kashani
    Results in Mathematics, 2021, 76
  • [34] ON THE RICCI CURVATURE TENSOR IN FINSLER GEOMETRY
    Shen, Zhongmin
    SYMMETRY-CULTURE AND SCIENCE, 2012, 23 (02): : 125 - 131
  • [35] Weyl structures with positive Ricci tensor
    Alexandrov, B
    Ivanov, S
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 18 (03) : 343 - 350
  • [36] The Ricci tensor of almost parahermitian manifolds
    Diego Conti
    Federico A. Rossi
    Annals of Global Analysis and Geometry, 2018, 53 : 467 - 501
  • [37] The Bochner technique and modification of the Ricci tensor
    Murat Limoncu
    Annals of Global Analysis and Geometry, 2009, 36 : 285 - 291
  • [38] The structure of the Ricci tensor on locally homogeneous Lorentzian gradient Ricci solitons
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    Gilkey, P.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 461 - 482
  • [39] On Shrinking Gradient Ricci Solitons with Positive Ricci Curvature and Small Weyl Tensor
    Zhuhong Zhang
    Chih-Wei Chen
    Acta Mathematica Scientia, 2019, 39 : 1235 - 1239
  • [40] CLASSIFICATION OF THE TRACELESS RICCI TENSOR IN 4-DIMENSIONAL PSEUDO-RIEMANNIAN SPACES OF NEUTRAL SIGNATURE
    Chudecki, Adam
    ACTA PHYSICA POLONICA B, 2017, 48 (01): : 53 - 75