MICROENCAPSULATION BY COACERVATION OF POLY(LACTIDE-CO-GLYCOLIDE) .3. CHARACTERIZATION OF THE FINAL MICROSPHERES

被引:23
|
作者
NIHANT, N
STASSEN, S
GRANDFILS, C
JEROME, R
TEYSSIE, P
GOFFINET, G
机构
[1] Center for Education and Research on Macromolecules (CERM), University of Liège, Institute of Chemistry, Liège, B-4000, B6, Sart‐Tilman
[2] University of Liège, Liège, B-4000
关键词
MICROENCAPSULATION; COACERVATION; MICROSPHERE; POLYLACTIDE; POLY(LACTIDE-CO-GLYCOLIDE); MORPHOLOGY; POROSITY;
D O I
10.1002/pi.1994.210340308
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This paper deals with protein microencapsulation by coacervation of poly(lactide-co-glycolide) solutions in CH2Cl2 induced by the addition of silicone oils of various viscosities. This coating technique proceeds along three steps: phase separation of the coating polyester, adsorption of the coacervate droplets around the protein phase, and hardening of microparticles. Size distribution, surface morphology and internal porosity of the final microspheres clearly depend on the main characteristics of the coacervate, particularly the viscosity, in a direct connection with the CH2Cl2 content. Indeed, the whole porosity (which may be as high as 80%), average pore size and broadness of pore size distribution decrease as the coacervate is more viscous. Hardening of the coacervate droplets is thus so fast that the organic solvent is entrapped within the polymer matrix and predetermines the internal porosity. Finally, size distribution of microspheres is bimodal in a clear relation with the coacervate viscosity. A less viscous coacervate favours smaller microspheres (within the 7-90 mum range), contaminated with a minor population of microparticles below 4 mum.
引用
收藏
页码:289 / 299
页数:11
相关论文
共 50 条
  • [31] Formulation strategies for the stabilization of tetanus toxoid in poly(lactide-co-glycolide) microspheres
    Sánchez, A
    Villamayor, B
    Guo, YY
    McIver, J
    Alonso, MJ
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1999, 185 (02) : 255 - 266
  • [32] Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold
    Hu, Xixue
    Shen, Hong
    Yang, Fei
    Liang, Xinjie
    Wang, Shenguo
    Wu, Decheng
    APPLIED SURFACE SCIENCE, 2014, 292 : 764 - 772
  • [33] Diameter and size distributions of Poly (lactide-co-glycolide) [PLG] based microspheres
    Berchane, Nader
    Jebrail, Farzaneh F.
    Carson, Kenneth H.
    Rice-Ficht, Allison C.
    Andrews, Malcolm J.
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE - 2005, VOL 1, PTS A AND B, 2005, : 1041 - 1048
  • [34] Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline
    Wang, Xiaoyun
    Xu, Hui
    Zhao, Yanqiu
    Wang, Shaoning
    Abe, Hiroya
    Naito, Makio
    Liu, Yanli
    Wang, Guoqing
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2012, 177 (04): : 367 - 372
  • [35] PERCOLATION AND RELEASE OF CISPLATIN LOADED IN POLY(LACTIDE-CO-GLYCOLIDE) MICROSPHERES FOR CHEMOEMBOLIZATION
    DEYME, M
    SPENLEHAUER, G
    BENOIT, JP
    JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS, 1992, 7 (02) : 149 - 160
  • [36] Poly(lactide-co-glycolide) microspheres for the controlled release of oligonucleotide/polyethylenimine complexes
    De Rosa, G
    Quaglia, F
    La Rotonda, MI
    Appel, M
    Alphandary, H
    Fattal, E
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (03) : 790 - 799
  • [37] Poly(lactide-co-glycolide)/cyclodextrin (polyethyleneimine) microspheres for controlled delivery of dexamethasone
    Bucatariu, Sanda
    Constantin, Marieta
    Ascenzi, Paolo
    Fundueanu, Gheorghe
    REACTIVE & FUNCTIONAL POLYMERS, 2016, 107 : 46 - 53
  • [38] Poly(lactide-co-glycolide) microspheres as a moldable scaffold for cartilage tissue engineering
    Mercier, NR
    Costantino, HR
    Tracy, MA
    Bonassar, LJ
    BIOMATERIALS, 2005, 26 (14) : 1945 - 1952
  • [39] Diffusivities of Dichloromethane in Poly(lactide-co-glycolide)
    Foss, Willard R.
    Anderl, Jeffrey N.
    Clausi, Amber L.
    Burke, Paul A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (03) : 1622 - 1629
  • [40] Polymeric nanomedicines based on poly(lactide) and poly(lactide-co-glycolide)
    Tong, Rong
    Gabrielson, Nathan P.
    Fan, Timothy M.
    Cheng, Jianjun
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (06): : 323 - 332