OBSERVABLES IN TOPOLOGICAL YANG-MILLS THEORY AND THE GRIBOV PROBLEM

被引:7
|
作者
KANNO, H
机构
[1] Research Institute for Fundamental Physics, Kyoto University, Kyoto
关键词
AMS subject classification (1980): 81E13;
D O I
10.1007/BF01039319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The origin of the nontriviality of observables in topological Yang-Mills theory is discussed from the viewpoint that BRST transformation is the exterior derivative. We show that the appearance of singularities due to the Gribov problem makes the Donaldson polynomials cohomologically nontrivial. © 1990 Kluwer Academic Publishers.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [41] INFINITE TOWER EXTENSION OF TOPOLOGICAL YANG-MILLS THEORY
    DEGUCHI, S
    PHYSICS LETTERS B, 1992, 282 (3-4) : 321 - 328
  • [42] An irreducible BRST approach of topological Yang-Mills theory
    Bizdadea, C
    Iordache, M
    Saliu, SO
    Timneanu, EN
    HELVETICA PHYSICA ACTA, 1998, 71 (03): : 262 - 273
  • [43] 4-DIMENSIONAL TOPOLOGICAL YANG-MILLS THEORY - SYMMETRIES, LOCAL OBSERVABLES, WILSON LOOPS AND CONFINEMENT
    HIETAMAKI, A
    NIEMI, AJ
    TIRKKONEN, O
    PHYSICS LETTERS B, 1990, 238 (2-4) : 291 - 298
  • [44] Lorentz-invariant quantization of the Yang-Mills theory free of the Gribov ambiguity
    A. A. Slavnov
    Theoretical and Mathematical Physics, 2009, 161 : 1497 - 1502
  • [45] Lorentz-invariant quantization of the Yang-Mills theory without Gribov ambiguity
    A. A. Slavnov
    Proceedings of the Steklov Institute of Mathematics, 2011, 272 : 235 - 245
  • [46] Local and BRST-invariant Yang-Mills theory within the Gribov horizon
    Capri, M. A. L.
    Dudal, D.
    Fiorentini, D.
    Guimaraes, M. S.
    Justo, I. F.
    Pereira, A. D.
    Mintz, B. W.
    Palhares, L. F.
    Sobreiro, R. F.
    Sorella, S. P.
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [47] Lorentz-invariant quantization of the Yang-Mills theory free of the Gribov ambiguity
    Slavnov, A. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 161 (02) : 1497 - 1502
  • [48] More on Gribov copies and propagators in Landau-gauge Yang-Mills theory
    Maas, Axel
    PHYSICAL REVIEW D, 2009, 79 (01):
  • [49] Lorentz-invariant quantization of the Yang-Mills theory without Gribov ambiguity
    Slavnov, A. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 (01) : 235 - 245