SINE-GORDON KINK SOLITONS AND THE MAGNETIZATION IN ONE-DIMENSIONAL ANTIFERROMAGNETIC CHAINS

被引:22
|
作者
LEMMENS, LF [1 ]
KIMURA, I [1 ]
DEJONGE, WJM [1 ]
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT PHYS,5600 MB EINDHOVEN,NETHERLANDS
来源
关键词
D O I
10.1088/0022-3719/19/2/010
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
引用
收藏
页码:139 / 150
页数:12
相关论文
共 50 条
  • [1] Wigner distribution of Sine-Gordon and Kink solitons
    Radhakrishnan, Ramkumar
    Ojha, Vikash Kumar
    [J]. MODERN PHYSICS LETTERS A, 2022, 37 (37-38)
  • [2] KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION
    Segovia Chaves, Francis Armando
    [J]. REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO, 2012, 3 (01): : 6 - 11
  • [3] SOLITONS IN ONE-DIMENSIONAL ANTIFERROMAGNETIC CHAINS
    PIRES, AST
    TALIM, SL
    COSTA, BV
    [J]. PHYSICAL REVIEW B, 1989, 39 (10): : 7149 - 7156
  • [4] Kink dynamics in finite discrete sine-Gordon chains
    Kwasniewski, A
    Machnikowski, P
    Magnuszewski, P
    [J]. PHYSICAL REVIEW E, 1999, 59 (02): : 2347 - 2354
  • [5] A new approach for one-dimensional sine-Gordon equation
    Akgul, Ali
    Inc, Mustafa
    Kilicman, Adem
    Baleanu, Dumitru
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 20
  • [6] GROUP OF INVARIANCE OF (ONE-DIMENSIONAL) SINE-GORDON EQUATION
    LEROY, B
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 22 (01): : 17 - 20
  • [7] A numerical method for the one-dimensional sine-Gordon equation
    Bratsos, A. G.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (03) : 833 - 844
  • [8] A new approach for one-dimensional sine-Gordon equation
    Ali Akgül
    Mustafa Inc
    Adem Kilicman
    Dumitru Baleanu
    [J]. Advances in Difference Equations, 2016
  • [9] SOLITONS AND MAGNONS IN SINE-GORDON LIKE MAGNETIC CHAINS
    ALLROTH, E
    MIKESKA, HJ
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (03): : 209 - 219
  • [10] PARAMETRICALLY DRIVEN ONE-DIMENSIONAL SINE-GORDON EQUATION AND CHAOS
    HERBST, BM
    STEEB, WH
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1988, 43 (8-9): : 727 - 733