Integral point sets over finite fields

被引:0
|
作者
Kurz, Sascha [1 ]
机构
[1] Univ Bayreuth, Fak Math Phys & Informat, Bayreuth, Germany
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider point sets in the affine plane F-q(2) where each Euclidean distance of two points is an element of F-q. These sets are called integral point sets and were originally defined in m- dimensional Euclidean spaces Em. We determine their maximal cardinality I(F-q, 2). For arbitrary commutative rings R instead of Fq or for further restrictions as no three points on a line or no four points on a circle we give partial results. Additionally we study the geometric structure of the examples with maximum cardinality.
引用
收藏
页码:3 / 29
页数:27
相关论文
共 50 条
  • [31] Dichotomous point counts over finite fields
    Wang, Victor Y.
    JOURNAL OF NUMBER THEORY, 2023, 250 : 1 - 34
  • [32] Integral automorphisms of affine planes over finite fields
    Kovacs, Istvan
    Ruff, Janos
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 27 : 104 - 114
  • [33] Integral closures and weight functions over finite fields
    Leonard, DA
    Pellikaan, R
    FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (04) : 479 - 504
  • [34] Integral automorphisms of affine spaces over finite fields
    Kovacs, Istvan
    Kutnar, Klavdija
    Ruff, Janos
    Szonyi, Tamas
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 181 - 188
  • [35] Integral closures and weight functions over finite fields
    Leonard, DA
    Pellikaan, R
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 59 - 59
  • [36] Integral automorphisms of affine spaces over finite fields
    István Kovács
    Klavdija Kutnar
    János Ruff
    Tamás Szőnyi
    Designs, Codes and Cryptography, 2017, 84 : 181 - 188
  • [37] Maximal integral point sets over Z2
    Antonov, Andrey Radoslavov
    Kurz, Sascha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) : 2653 - 2676
  • [38] Value sets of bivariate folding polynomials over finite fields
    Kucuksakalli, Omer
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 253 - 272
  • [39] Sets with many pairs of orthogonal vectors over finite fields
    Ahmadi, Omran
    Mohammadian, Ali
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 : 179 - 192
  • [40] Large sets of t-designs over finite fields
    Braun, Michael
    Kohnert, Axel
    Ostergard, Patric R. J.
    Wassermann, Alfred
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 124 : 195 - 202