Integral point sets over finite fields

被引:0
|
作者
Kurz, Sascha [1 ]
机构
[1] Univ Bayreuth, Fak Math Phys & Informat, Bayreuth, Germany
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider point sets in the affine plane F-q(2) where each Euclidean distance of two points is an element of F-q. These sets are called integral point sets and were originally defined in m- dimensional Euclidean spaces Em. We determine their maximal cardinality I(F-q, 2). For arbitrary commutative rings R instead of Fq or for further restrictions as no three points on a line or no four points on a circle we give partial results. Additionally we study the geometric structure of the examples with maximum cardinality.
引用
收藏
页码:3 / 29
页数:27
相关论文
共 50 条
  • [1] Maximal integral point sets in affine planes over finite fields
    Kiermaier, Michael
    Kurz, Sascha
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4564 - 4575
  • [2] Integral point sets in higher dimensional affine spaces over finite fields
    Kurz, Sascha
    Meyer, Harald
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (06) : 1120 - 1139
  • [3] SETS WITH INTEGRAL DISTANCES IN FINITE FIELDS
    Iosevich, Alex
    Shparlinski, Igor E.
    Xiong, Maosheng
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (04) : 2189 - 2204
  • [4] ON THE VOLUME SET OF POINT SETS IN VECTOR SPACES OVER FINITE FIELDS
    Le Anh Vinh
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3067 - 3071
  • [5] Integral point sets over Znm
    Kohnert, Axel
    Kurz, Sascha
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (09) : 2105 - 2117
  • [6] ON BOREL FIELDS OVER FINITE SETS
    SZEKERES, G
    BINET, FE
    ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (02): : 494 - 498
  • [7] Integral Cayley graphs generated by distance sets in vector spaces over finite fields
    Dai, Nguyen Ngoc
    Hai, Nguyen Minh
    Hieu, Do Duy
    Vinh, Le Anh
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [8] Tiling sets and spectral sets over finite fields
    Aten, C.
    Ayachi, B.
    Bau, E.
    FitzPatrick, D.
    Iosevich, A.
    Liu, H.
    Lott, A.
    MacKinnon, I.
    Maimon, S.
    Nan, S.
    Pakianathan, J.
    Petridis, G.
    Mena, C. Rojas
    Sheikh, A.
    Tribone, T.
    Weill, J.
    Yu, C.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (08) : 2547 - 2577
  • [9] Value sets of polynomials over finite fields
    Das, P
    Mullen, GL
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 80 - 85
  • [10] DEFINABLE SETS OVER FINITE-FIELDS
    CHATZIDAKIS, Z
    VANDENDRIES, L
    MACINTYRE, A
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1992, 427 : 107 - 135