Supervised Classification of the Scalar Gaussian Random Field Observations under a Deterministic Spatial Sampling Design

被引:0
|
作者
Ducinskas, Kestutis [1 ]
Dreiziene, Lina [1 ]
机构
[1] Klaipeda Univ, Dept Stat, H Manto St 84, LT-92294 Klaipeda, Lithuania
关键词
Bayesian Discriminant Function; Covariance Function; Gaussian Random Field; Actual Risk; Training Labels Configuration;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given training sample, the problem of classifying a scalar Gaussian random field observation into one of two populations specified by different parametric mean models and common parametric covariance function is considered. Such problems are usually called as supervised classification or contextual classification problems. This paper concerns with classification procedures associated with Bayes Discriminant Function (BDF) under deterministic spatial sampling design. In the case of parametric uncertainty, the ML estimators of unknown parameters are plugged in the BDF. The actual risk and the approximation of the expected risk (AER) associated with aforementioned plug-in BDF are derived. This is the extension of the previous one to the case of complete parametric uncertainty, i.e., when all mean functions and covariance function parameters are unknown. Stationary geometrically anisotropic Gaussian random field with exponential covariance function sampled on regular 2-dimensional lattice is used for illustrative examples.
引用
收藏
页码:25 / 36
页数:12
相关论文
共 50 条
  • [21] Iterative Random Training Sampling Spectral Spatial Classification for Hyperspectral Images
    Chang, Chein-, I
    Ma, Kenneth Yeonkong
    Liang, Chia-Chen
    Kuo, Yi-Mei
    Chen, Shuhan
    Zhong, Shengwei
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 3986 - 4007
  • [22] Random perturbation methods applied to multivariate spatial sampling design
    Angulo, JM
    Bueso, MC
    ENVIRONMETRICS, 2001, 12 (07) : 631 - 646
  • [23] Bayesian Spatial Prediction for Discrete Closed Skew Gaussian Random Field
    Karimi, Omid
    Mohammadzadeh, Mohsen
    MATHEMATICAL GEOSCIENCES, 2011, 43 (05) : 565 - 582
  • [24] Bayesian Spatial Prediction for Discrete Closed Skew Gaussian Random Field
    Omid Karimi
    Mohsen Mohammadzadeh
    Mathematical Geosciences, 2011, 43 : 565 - 582
  • [25] Scaling intrinsic Gaussian Markov random field priors in spatial modelling
    Sorbye, Sigrunn Holbek
    Rue, Havard
    SPATIAL STATISTICS, 2014, 8 : 39 - 51
  • [26] Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features
    Zhao, Yindi
    Zhang, Liangpei
    Li, Pingxiang
    Huang, Bo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (05): : 1458 - 1468
  • [27] Nonparametric spatial prediction under stochastic sampling design
    Menezes, Raquel
    Garcia-Soidan, Pilar
    Ferreira, Celia
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (03) : 363 - 377
  • [29] Spatial sampling design under the infill asymptotic framework
    Zhu, ZY
    Zhang, H
    ENVIRONMETRICS, 2006, 17 (04) : 323 - 337
  • [30] SPECTRAL TRANSFORMER WITH DYNAMIC SPATIAL SAMPLING AND GAUSSIAN POSITIONAL EMBEDDING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Feng, Jiaqi
    Luo, Xiaoyan
    Li, Sen
    Wang, Qixiong
    Yin, Jihao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3556 - 3559