SOLITON SCATTERING IN THE CP2 MODEL

被引:3
|
作者
PIETTE, B [1 ]
RASHID, MSS [1 ]
ZAKRZEWSKI, WJ [1 ]
机构
[1] LOS ALAMOS NATL LAB,CTR NONLINEAR STUDIES,LOS ALAMOS,NM 87545
关键词
D O I
10.1088/0951-7715/6/6/015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solitonic properties of the static solutions of the CP2 model in (2 + 1) dimensions. We find that, as in the CP1 model, in their head-on scatterings the solitons scatter at 90 degrees and undergo a shift along their trajectories. We consider also the effects of adding a further term to the action (an analogue of the CP1 Hopf term, which in the CP2 case is not locally a total divergence and contributes to the equations of motion).
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [21] Fermion-soliton scattering in a modified CP1 model
    Loginov, A. Yu.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (05):
  • [22] EIGENFUNCTIONS AND SPINC STRUCTURES IN CP2
    POPE, CN
    PHYSICS LETTERS B, 1980, 97 (3-4) : 417 - 422
  • [23] Dielectric characteristics of polyimide CP2
    Jacobs, J. David
    Arlen, Mike J.
    Wang, David H.
    Ounaies, Zoubeida
    Berry, Rajiv
    Tan, Loon-Seng
    Garrett, Patrick H.
    Vaia, Richard A.
    POLYMER, 2010, 51 (14) : 3139 - 3146
  • [24] Knotting of algebraic curves in CP2
    Finashin, S
    TOPOLOGY, 2002, 41 (01) : 47 - 55
  • [25] Stratification of the space of foliations on CP2
    Alcantara, Claudia R.
    JOURNAL OF SYMBOLIC COMPUTATION, 2016, 72 : 147 - 160
  • [26] On exotic Lagrangian tori in CP2
    Vianna, Renato
    GEOMETRY & TOPOLOGY, 2014, 18 (04) : 2419 - 2476
  • [27] INSTANTON INVARIANTS OF CP2 TOPOLOGY
    KOTSCHICK, D
    LISCA, P
    MATHEMATISCHE ANNALEN, 1995, 303 (02) : 345 - 371
  • [28] Repeat after Me(CP2)!
    Zhou, Jian
    Zoghbi, Huda
    SCIENCE, 2021, 372 (6549) : 1390 - 1391
  • [29] On an exotic Lagrangian torus in CP2
    Wu, Weiwei
    COMPOSITIO MATHEMATICA, 2015, 151 (07) : 1372 - 1394
  • [30] NIL-INSTANTONS ASSOCIATED WITH THE CLASSICAL TORUS CP2 MODEL
    CHARGOYCORONA, J
    GLAZEBROOK, JF
    LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (03) : 213 - 217