TEMPORAL AND SPATIAL EVOLUTION OF PICOSECOND PHONON-POLARITON PULSES IN CRYSTALS

被引:34
|
作者
VALLEE, F
FLYTZANIS, C
机构
[1] Laboratoire d'Optique Quantique, Centre National de la Recherche Scientifique, Ecole Polytechnique
来源
PHYSICAL REVIEW B | 1992年 / 46卷 / 21期
关键词
D O I
10.1103/PhysRevB.46.13799
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The creation and the detection of short polariton pulses by use of the nonlocal time-resolved coherent anti-Stokes Raman scattering (CARS) technique is analyzed using a classical model. The spatiotemporal evolution of the CARS signal is calculated and the relations between the measured parameters and the material characteristics governing the polariton dynamics are explicitly derived. The results are applied to the investigation of the ordinary polariton in LiIO3 on both sides of a forbidden band. The dispersions of the polariton group velocity and dephasing time are directly measured in the time domain and the results are compared to static investigations. The frequency and temperature dependences of the measured polariton dephasing rates are interpreted in terms of anharmonic coupling with phonons on the basis of a theoretical model including both electrical and mechanical anharmonicity.
引用
收藏
页码:13799 / 13812
页数:14
相关论文
共 50 条
  • [31] Nonlinear Shift in Phonon-Polariton Dispersion on a SiC Surface
    Kitade, Shuta
    Yamada, Atsushi
    Morichika, Ikki
    Yabana, Kazuhiro
    Ashihara, Satoshi
    ACS PHOTONICS, 2021, 8 (01) : 152 - 157
  • [32] Surface Phonon-Polariton Heat Capacity of Polar Nanofilms
    Ordonez-Miranda, Jose
    Volz, Sebastian
    Nomura, Masahiro
    PHYSICAL REVIEW APPLIED, 2021, 15 (05)
  • [33] Broadband Terahertz Spectroscopy of Phonon-Polariton Dispersion in Ferroelectrics
    Kojima, Seiji
    PHOTONICS, 2018, 5 (04)
  • [34] Direct visualization of phonon-polariton focusing and amplitude enhancement
    Stoyanov, NS
    Ward, DW
    Feurer, T
    Nelson, KA
    JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (06): : 2897 - 2901
  • [35] Monolithic Phononic Crystals with a Surface Acoustic Band Gap from Surface Phonon-Polariton Coupling
    Yudistira, D.
    Boes, A.
    Djafari-Rouhani, B.
    Pennec, Y.
    Yeo, L. Y.
    Mitchell, A.
    Friend, J. R.
    PHYSICAL REVIEW LETTERS, 2014, 113 (21)
  • [36] Planar Resonators Supporting Extremely Confined Phonon-Polariton Modes
    Dubrovkin, Alexander M.
    Qiang, Bo
    Salim, Teddy
    Nam, Donguk
    Zheludev, Nikolay, I
    Wang, Qi Jie
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [37] Phonon-polariton dispersion and the polariton-based photonic band gap in piezoelectric superlattices
    Zhang, XJ
    Zhu, RQ
    Zhao, J
    Chen, YF
    Zhu, YY
    PHYSICAL REVIEW B, 2004, 69 (08)
  • [38] Unveiling the Mechanism of Phonon-Polariton Damping in α-MoO3
    Taboada-Gutierrez, Javier
    Zhou, Yixi
    Tresguerres-Mata, Ana I. F.
    Lanza, Christian
    Martinez-Suarez, Abel
    Alvarez-Perez, Gonzalo
    Duan, Jiahua
    Ignacio Martin, Jose
    Velez, Maria
    Prieto, Ivan
    Bercher, Adrien
    Teyssier, Jeremie
    Errea, Ion
    Nikitin, Alexey Y.
    Martin-Sanchez, Javier
    Kuzmenko, Alexey B.
    Alonso-Gonzalez, Pablo
    ACS PHOTONICS, 2024, 11 (09): : 3570 - 3577
  • [39] Investigation of intersubband phonon-polariton transitions in hBN/GaN heterostructure
    O'Hearn, Catherine
    Dawson, Jeremy
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVIII, 2020, 11274
  • [40] Transition from surface phonon-polariton to surface phonon-plasmon-polariton by thermal injection of free carriers
    El-Helou, Y.
    Wu, K-T
    Bruyant, A.
    Woon, W-Y
    Kazan, M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (26)