LINKAGE;
LOCAL BERTINI THEOREM;
NASH BLOW UP;
R-FOLD BASIC ELEMENTS;
D O I:
10.1007/BF02863411
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We prove a generalization of Flenner's local Bertini theorem for complete intersections. More generally, we study properties of the 'general' ideal linked to a given ideal. Our results imply the following. Let R be a regular local Nagata ring containing an infinite perfect field k, and I subset-of R is an equidimensional radical ideal of height r, such that R/I is Cohen-Macaulay and a local complete intersection in codimension 1. Then for the 'general' linked ideal J(alpha), R/J(alpha) is normal and Cohen-Macaulay. The proofs involve a combination of the method of basic elements, applied to suitable blow ups.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538914, Japan
机构:
Dipartimento di Matematica, Politecnico di Torino, C.so Duca degli Abruzzi 24Dipartimento di Matematica, Politecnico di Torino, C.so Duca degli Abruzzi 24